ﻻ يوجد ملخص باللغة العربية
The influence of an asymmetric in-plane magnetic anisotropy on the thermally activated spin current is studied theoretically for two different systems; (i) the system consisting of a ferromagnetic insulator in a direct contact with a nonmagnetic metal, and the sandwich structure consisting of a ferromagnetic insulating part sandwiched between two nonmagnetic metals. It is shown that when the difference between the temperatures of the two nonmagnetic metals in a structure is not large, the spin pumping currents from the magnetic part to the nonmagnetic ones are equal in amplitude and have opposite directions, so only the spin torque current contributes to the total spin current. The spin current flows then from the nonmagnetic metal with the higher temperature to the nonmagnetic metal having a lower temperature. Its amplitude varies linearly with the difference in temperatures. In addition, we have found that if the magnetic anisotropy is in the layer plane, then the spin current increases with the magnon temperature, while in the case of an out-of-plane magnetic anisotropy the spin current decreases when the magnon temperature enhances. Enlarging the difference between the temperatures of the nonmagnetic metals, the linear response becomes important, as confirmed by analytical expressions inferred from the Fokker-Planck approach and by the results obtained upon a full numerical integration of the stochastic Landau-Lifshitz-Gilbert equation.
A mechanical equivalent system is introduced to mimic the behavior of multilayer structures with diffusive spin transport. The analogy allows one to use existing mechanical intuition to predict the influence of various parameters on spin torques and
We develop a theoretical framework to study the influences of coupling asymmetry on the thermoelectrics of a strongly coupled SU($N$) Kondo impurity based on a local Fermi liquid theory. Applying non-equilibrium Keldysh formalism, we investigate char
We study spin-dependent electron transport through a ferromagnetic-antiferromagnetic-normal metal tunneling junction subject to a voltage or temperature bias, in the absence of spin-orbit coupling. We derive microscopic formulas for various types of
Investigating exotic magnetic materials with spintronic techniques is effective at advancing magnetism as well as spintronics. In this work, we report unusual field-induced suppression of the spin-Seebeck effect (SSE) in a quasi one-dimensional frust
We report on the fabrication and transport studies of a single-layer graphene p-n junction. Carrier type and density in two adjacent regions are individually controlled by electrostatic gating using a local top gate and a global back gate. A function