ﻻ يوجد ملخص باللغة العربية
We study the problem of {em list-decodable mean estimation} for bounded covariance distributions. Specifically, we are given a set $T$ of points in $mathbb{R}^d$ with the promise that an unknown $alpha$-fraction of points in $T$, where $0< alpha < 1/2$, are drawn from an unknown mean and bounded covariance distribution $D$, and no assumptions are made on the remaining points. The goal is to output a small list of hypothesis vectors such that at least one of them is close to the mean of $D$. We give the first practically viable estimator for this problem. In more detail, our algorithm is sample and computationally efficient, and achieves information-theoretically near-optimal error. While the only prior algorithm for this setting inherently relied on the ellipsoid method, our algorithm is iterative and only uses spectral techniques. Our main technical innovation is the design of a soft outlier removal procedure for high-dimensional heavy-tailed datasets with a majority of outliers.
We give the first polynomial-time algorithm for robust regression in the list-decodable setting where an adversary can corrupt a greater than $1/2$ fraction of examples. For any $alpha < 1$, our algorithm takes as input a sample ${(x_i,y_i)}_{i leq
We consider the problem of estimating the number of distinct elements in a large data set (or, equivalently, the support size of the distribution induced by the data set) from a random sample of its elements. The problem occurs in many applications,
The list-decodable code has been an active topic in theoretical computer science since the seminal papers of M. Sudan and V. Guruswami in 1997-1998. There are general result about the Johnson radius and the list-decoding capacity theorem for random c
We study the problem of outlier robust high-dimensional mean estimation under a finite covariance assumption, and more broadly under finite low-degree moment assumptions. We consider a standard stability condition from the recent robust statistics li
We introduce and study the model of list learning with attribute noise. Learning with attribute noise was introduced by Shackelford and Volper (COLT 1988) as a variant of PAC learning, in which the algorithm has access to noisy examples and uncorrupt