ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating the number of distinct elements in a large data set (or, equivalently, the support size of the distribution induced by the data set) from a random sample of its elements. The problem occurs in many applications, including biology, genomics, computer systems and linguistics. A line of research spanning the last decade resulted in algorithms that estimate the support up to $ pm varepsilon n$ from a sample of size $O(log^2(1/varepsilon) cdot n/log n)$, where $n$ is the data set size. Unfortunately, this bound is known to be tight, limiting further improvements to the complexity of this problem. In this paper we consider estimation algorithms augmented with a machine-learning-based predictor that, given any element, returns an estimation of its frequency. We show that if the predictor is correct up to a constant approximation factor, then the sample complexity can be reduced significantly, to [ log (1/varepsilon) cdot n^{1-Theta(1/log(1/varepsilon))}. ] We evaluate the proposed algorithms on a collection of data sets, using the neural-network based estimators from {Hsu et al, ICLR19} as predictors. Our experiments demonstrate substantial (up to 3x) improvements in the estimation accuracy compared to the state of the art algorithm.
We study the problem of {em list-decodable mean estimation} for bounded covariance distributions. Specifically, we are given a set $T$ of points in $mathbb{R}^d$ with the promise that an unknown $alpha$-fraction of points in $T$, where $0< alpha < 1/
How quickly can a given class of concepts be learned from examples? It is common to measure the performance of a supervised machine learning algorithm by plotting its learning curve, that is, the decay of the error rate as a function of the number of
We study the problem of estimating the expected reward of the optimal policy in the stochastic disjoint linear bandit setting. We prove that for certain settings it is possible to obtain an accurate estimate of the optimal policy value even with a nu
Gaussian Graphical Models (GGMs) have wide-ranging applications in machine learning and the natural and social sciences. In most of the settings in which they are applied, the number of observed samples is much smaller than the dimension and they are
We analyze the popular kernel polynomial method (KPM) for approximating the spectral density (eigenvalue distribution) of an $ntimes n$ Hermitian matrix $A$. We prove that a simple and practical variant of the KPM algorithm can approximate the spectr