ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning-based Support Estimation in Sublinear Time

71   0   0.0 ( 0 )
 نشر من قبل Shyam Narayanan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of estimating the number of distinct elements in a large data set (or, equivalently, the support size of the distribution induced by the data set) from a random sample of its elements. The problem occurs in many applications, including biology, genomics, computer systems and linguistics. A line of research spanning the last decade resulted in algorithms that estimate the support up to $ pm varepsilon n$ from a sample of size $O(log^2(1/varepsilon) cdot n/log n)$, where $n$ is the data set size. Unfortunately, this bound is known to be tight, limiting further improvements to the complexity of this problem. In this paper we consider estimation algorithms augmented with a machine-learning-based predictor that, given any element, returns an estimation of its frequency. We show that if the predictor is correct up to a constant approximation factor, then the sample complexity can be reduced significantly, to [ log (1/varepsilon) cdot n^{1-Theta(1/log(1/varepsilon))}. ] We evaluate the proposed algorithms on a collection of data sets, using the neural-network based estimators from {Hsu et al, ICLR19} as predictors. Our experiments demonstrate substantial (up to 3x) improvements in the estimation accuracy compared to the state of the art algorithm.

قيم البحث

اقرأ أيضاً

We study the problem of {em list-decodable mean estimation} for bounded covariance distributions. Specifically, we are given a set $T$ of points in $mathbb{R}^d$ with the promise that an unknown $alpha$-fraction of points in $T$, where $0< alpha < 1/ 2$, are drawn from an unknown mean and bounded covariance distribution $D$, and no assumptions are made on the remaining points. The goal is to output a small list of hypothesis vectors such that at least one of them is close to the mean of $D$. We give the first practically viable estimator for this problem. In more detail, our algorithm is sample and computationally efficient, and achieves information-theoretically near-optimal error. While the only prior algorithm for this setting inherently relied on the ellipsoid method, our algorithm is iterative and only uses spectral techniques. Our main technical innovation is the design of a soft outlier removal procedure for high-dimensional heavy-tailed datasets with a majority of outliers.
How quickly can a given class of concepts be learned from examples? It is common to measure the performance of a supervised machine learning algorithm by plotting its learning curve, that is, the decay of the error rate as a function of the number of training examples. However, the classical theoretical framework for understanding learnability, the PAC model of Vapnik-Chervonenkis and Valiant, does not explain the behavior of learning curves: the distribution-free PAC model of learning can only bound the upper envelope of the learning curves over all possible data distributions. This does not match the practice of machine learning, where the data source is typically fixed in any given scenario, while the learner may choose the number of training examples on the basis of factors such as computational resources and desired accuracy. In this paper, we study an alternative learning model that better captures such practical aspects of machine learning, but still gives rise to a complete theory of the learnable in the spirit of the PAC model. More precisely, we consider the problem of universal learning, which aims to understand the performance of learning algorithms on every data distribution, but without requiring uniformity over the distribution. The main result of this paper is a remarkable trichotomy: there are only three possible rates of universal learning. More precisely, we show that the learning curves of any given concept class decay either at an exponential, linear, or arbitrarily slow rates. Moreover, each of these cases is completely characterized by appropriate combinatorial parameters, and we exhibit optimal learning algorithms that achieve the best possible rate in each case. For concreteness, we consider in this paper only the realizable case, though analogous results are expected to extend to more general learning scenarios.
We study the problem of estimating the expected reward of the optimal policy in the stochastic disjoint linear bandit setting. We prove that for certain settings it is possible to obtain an accurate estimate of the optimal policy value even with a nu mber of samples that is sublinear in the number that would be required to emph{find} a policy that realizes a value close to this optima. We establish nearly matching information theoretic lower bounds, showing that our algorithm achieves near optimal estimation error. Finally, we demonstrate the effectiveness of our algorithm on joke recommendation and cancer inhibition dosage selection problems using real datasets.
Gaussian Graphical Models (GGMs) have wide-ranging applications in machine learning and the natural and social sciences. In most of the settings in which they are applied, the number of observed samples is much smaller than the dimension and they are assumed to be sparse. While there are a variety of algorithms (e.g. Graphical Lasso, CLIME) that provably recover the graph structure with a logarithmic number of samples, they assume various conditions that require the precision matrix to be in some sense well-conditioned. Here we give the first polynomial-time algorithms for learning attractive GGMs and walk-summable GGMs with a logarithmic number of samples without any such assumptions. In particular, our algorithms can tolerate strong dependencies among the variables. Our result for structure recovery in walk-summable GGMs is derived from a more general result for efficient sparse linear regression in walk-summable models without any norm dependencies. We complement our results with experiments showing that many existing algorithms fail even in some simple settings where there are long dependency chains, whereas ours do not.
We analyze the popular kernel polynomial method (KPM) for approximating the spectral density (eigenvalue distribution) of an $ntimes n$ Hermitian matrix $A$. We prove that a simple and practical variant of the KPM algorithm can approximate the spectr al density to $epsilon$ accuracy in the Wasserstein-1 distance with roughly $O({1}/{epsilon})$ matrix-vector multiplications with $A$. This yields a provable linear time result for the problem with better $epsilon$ dependence than prior work. The KPM variant we study is based on damped Chebyshev polynomial expansions. We show that it is stable, meaning that it can be combined with any approximate matrix-vector multiplication algorithm for $A$. As an application, we develop an $O(ncdot text{poly}(1/epsilon))$ time algorithm for computing the spectral density of any $ntimes n$ normalized graph adjacency or Laplacian matrix. This runtime is sublinear in the size of the matrix, and assumes sample access to the graph. Our approach leverages several tools from approximation theory, including Jacksons seminal work on approximation with positive kernels [Jackson, 1912], and stability properties of three-term recurrence relations for orthogonal polynomials.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا