ﻻ يوجد ملخص باللغة العربية
We introduce and study the model of list learning with attribute noise. Learning with attribute noise was introduced by Shackelford and Volper (COLT 1988) as a variant of PAC learning, in which the algorithm has access to noisy examples and uncorrupted labels, and the goal is to recover an accurate hypothesis. Sloan (COLT 1988) and Goldman and Sloan (Algorithmica 1995) discovered information-theoretic limits to learning in this model, which have impeded further progress. In this article we extend the model to that of list learning, drawing inspiration from the list-decoding model in coding theory, and its recent variant studied in the context of learning. On the positive side, we show that sparse conjunctions can be efficiently list learned under some assumptions on the underlying ground-truth distribution. On the negative side, our results show that even in the list-learning model, efficient learning of parities and majorities is not possible regardless of the representation used.
We study efficient PAC learning of homogeneous halfspaces in $mathbb{R}^d$ in the presence of malicious noise of Valiant~(1985). This is a challenging noise model and only until recently has near-optimal noise tolerance bound been established under t
This paper is concerned with computationally efficient learning of homogeneous sparse halfspaces in $mathbb{R}^d$ under noise. Though recent works have established attribute-efficient learning algorithms under various types of label noise (e.g. bound
We study {em online} active learning of homogeneous halfspaces in $mathbb{R}^d$ with adversarial noise where the overall probability of a noisy label is constrained to be at most $ u$. Our main contribution is a Perceptron-like online active learning
This chapter considers the computational and statistical aspects of learning linear thresholds in presence of noise. When there is no noise, several algorithms exist that efficiently learn near-optimal linear thresholds using a small amount of data.
We consider the problem of learning linear classifiers when both features and labels are binary. In addition, the features are noisy, i.e., they could be flipped with an unknown probability. In Sy-De attribute noise model, where all features could be