ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Model Penalized Regression

110   0   0.0 ( 0 )
 نشر من قبل Laura Wendelberger
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Model fitting often aims to fit a single model, assuming that the imposed form of the model is correct. However, there may be multiple possible underlying explanatory patterns in a set of predictors that could explain a response. Model selection without regarding model uncertainty can fail to bring these patterns to light. We present multi-model penalized regression (MMPR) to acknowledge model uncertainty in the context of penalized regression. In the penalty form explored here, we examine how different settings can promote either shrinkage or sparsity of coefficients in separate models. The method is tuned to explicitly limit model similarity. A choice of penalty form that enforces variable selection is applied to predict stacking fault energy (SFE) from steel alloy composition. The aim is to identify multiple models with different subsets of covariates that explain a single type of response.



قيم البحث

اقرأ أيضاً

Modern applications require methods that are computationally feasible on large datasets but also preserve statistical efficiency. Frequently, these two concerns are seen as contradictory: approximation methods that enable computation are assumed to d egrade statistical performance relative to exact methods. In applied mathematics, where much of the current theoretical work on approximation resides, the inputs are considered to be observed exactly. The prevailing philosophy is that while the exact problem is, regrettably, unsolvable, any approximation should be as small as possible. However, from a statistical perspective, an approximate or regularized solution may be preferable to the exact one. Regularization formalizes a trade-off between fidelity to the data and adherence to prior knowledge about the data-generating process such as smoothness or sparsity. The resulting estimator tends to be more useful, interpretable, and suitable as an input to other methods. In this paper, we propose new methodology for estimation and prediction under a linear model borrowing insights from the approximation literature. We explore these procedures from a statistical perspective and find that in many cases they improve both computational and statistical performance.
Quadratic regression goes beyond the linear model by simultaneously including main effects and interactions between the covariates. The problem of interaction estimation in high dimensional quadratic regression has received extensive attention in the past decade. In this article we introduce a novel method which allows us to estimate the main effects and interactions separately. Unlike existing methods for ultrahigh dimensional quadratic regressions, our proposal does not require the widely used heredity assumption. In addition, our proposed estimates have explicit formulas and obey the invariance principle at the population level. We estimate the interactions of matrix form under penalized convex loss function. The resulting estimates are shown to be consistent even when the covariate dimension is an exponential order of the sample size. We develop an efficient ADMM algorithm to implement the penalized estimation. This ADMM algorithm fully explores the cheap computational cost of matrix multiplication and is much more efficient than existing penalized methods such as all pairs LASSO. We demonstrate the promising performance of our proposal through extensive numerical studies.
127 - Ding Xiang , Galin L. Jones 2017
We consider penalized regression models under a unified framework where the particular method is determined by the form of the penalty term. We propose a fully Bayesian approach that incorporates both sparse and dense settings and show how to use a t ype of model averaging approach to eliminate the nuisance penalty parameters and perform inference through the marginal posterior distribution of the regression coefficients. We establish tail robustness of the resulting estimator as well as conditional and marginal posterior consistency. We develop an efficient component-wise Markov chain Monte Carlo algorithm for sampling. Numerical results show that the method tends to select the optimal penalty and performs well in both variable selection and prediction and is comparable to, and often better than alternative methods. Both simulated and real data examples are provided.
This article is concerned with the Bridge Regression, which is a special family in penalized regression with penalty function $sum_{j=1}^{p}|beta_j|^q$ with $q>0$, in a linear model with linear restrictions. The proposed restricted bridge (RBRIDGE) e stimator simultaneously estimates parameters and selects important variables when a prior information about parameters are available in either low dimensional or high dimensional case. Using local quadratic approximation, the penalty term can be approximated around a local initial values vector and the RBRIDGE estimator enjoys a closed-form expression which can be solved when $q>0$. Special cases of our proposal are the restricted LASSO ($q=1$), restricted RIDGE ($q=2$), and restricted Elastic Net ($1< q < 2$) estimators. We provide some theoretical properties of the RBRIDGE estimator under for the low dimensional case, whereas the computational aspects are given for both low and high dimensional cases. An extensive Monte Carlo simulation study is conducted based on different prior pieces of information and the performance of the RBRIDGE estiamtor is compared with some competitive penalty estimators as well as the ORACLE. We also consider four real data examples analysis for comparison sake. The numerical results show that the suggested RBRIDGE estimator outperforms outstandingly when the prior is true or near exact
133 - Jin Liu , Can Yang , Xingjie Shi 2013
In genome-wide association studies (GWAS), penalization is an important approach for identifying genetic markers associated with trait while mixed model is successful in accounting for a complicated dependence structure among samples. Therefore, pena lized linear mixed model is a tool that combines the advantages of penalization approach and linear mixed model. In this study, a GWAS with multiple highly correlated traits is analyzed. For GWAS with multiple quantitative traits that are highly correlated, the analysis using traits marginally inevitably lose some essential information among multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed model that allows both the within-trait and between-trait variance components simultaneously for multiple traits. The proposed penalized-MTMM estimates variance components using an AI-REML method and conducts variable selection and point estimation simultaneously using group MCP and sparse group MCP. Best linear unbiased predictor (BLUP) is used to find predictive values and the Pearsons correlations between predictive values and their corresponding observations are used to evaluate prediction performance. Both prediction and selection performance of the proposed approach and its comparison with the uni-trait penalized-LMM are evaluated through simulation studies. We apply the proposed approach to a GWAS data from Genetic Analysis Workshop (GAW) 18.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا