ﻻ يوجد ملخص باللغة العربية
We consider penalized regression models under a unified framework where the particular method is determined by the form of the penalty term. We propose a fully Bayesian approach that incorporates both sparse and dense settings and show how to use a type of model averaging approach to eliminate the nuisance penalty parameters and perform inference through the marginal posterior distribution of the regression coefficients. We establish tail robustness of the resulting estimator as well as conditional and marginal posterior consistency. We develop an efficient component-wise Markov chain Monte Carlo algorithm for sampling. Numerical results show that the method tends to select the optimal penalty and performs well in both variable selection and prediction and is comparable to, and often better than alternative methods. Both simulated and real data examples are provided.
In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Proc
This article is concerned with the Bridge Regression, which is a special family in penalized regression with penalty function $sum_{j=1}^{p}|beta_j|^q$ with $q>0$, in a linear model with linear restrictions. The proposed restricted bridge (RBRIDGE) e
Model fitting often aims to fit a single model, assuming that the imposed form of the model is correct. However, there may be multiple possible underlying explanatory patterns in a set of predictors that could explain a response. Model selection with
Record linkage (de-duplication or entity resolution) is the process of merging noisy databases to remove duplicate entities. While record linkage removes duplicate entities from such databases, the downstream task is any inferential, predictive, or p
Modern applications require methods that are computationally feasible on large datasets but also preserve statistical efficiency. Frequently, these two concerns are seen as contradictory: approximation methods that enable computation are assumed to d