ترغب بنشر مسار تعليمي؟ اضغط هنا

Penalized Interaction Estimation for Ultrahigh Dimensional Quadratic Regression

61   0   0.0 ( 0 )
 نشر من قبل Cheng Wang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Quadratic regression goes beyond the linear model by simultaneously including main effects and interactions between the covariates. The problem of interaction estimation in high dimensional quadratic regression has received extensive attention in the past decade. In this article we introduce a novel method which allows us to estimate the main effects and interactions separately. Unlike existing methods for ultrahigh dimensional quadratic regressions, our proposal does not require the widely used heredity assumption. In addition, our proposed estimates have explicit formulas and obey the invariance principle at the population level. We estimate the interactions of matrix form under penalized convex loss function. The resulting estimates are shown to be consistent even when the covariate dimension is an exponential order of the sample size. We develop an efficient ADMM algorithm to implement the penalized estimation. This ADMM algorithm fully explores the cheap computational cost of matrix multiplication and is much more efficient than existing penalized methods such as all pairs LASSO. We demonstrate the promising performance of our proposal through extensive numerical studies.


قيم البحث

اقرأ أيضاً

Model fitting often aims to fit a single model, assuming that the imposed form of the model is correct. However, there may be multiple possible underlying explanatory patterns in a set of predictors that could explain a response. Model selection with out regarding model uncertainty can fail to bring these patterns to light. We present multi-model penalized regression (MMPR) to acknowledge model uncertainty in the context of penalized regression. In the penalty form explored here, we examine how different settings can promote either shrinkage or sparsity of coefficients in separate models. The method is tuned to explicitly limit model similarity. A choice of penalty form that enforces variable selection is applied to predict stacking fault energy (SFE) from steel alloy composition. The aim is to identify multiple models with different subsets of covariates that explain a single type of response.
Modern applications require methods that are computationally feasible on large datasets but also preserve statistical efficiency. Frequently, these two concerns are seen as contradictory: approximation methods that enable computation are assumed to d egrade statistical performance relative to exact methods. In applied mathematics, where much of the current theoretical work on approximation resides, the inputs are considered to be observed exactly. The prevailing philosophy is that while the exact problem is, regrettably, unsolvable, any approximation should be as small as possible. However, from a statistical perspective, an approximate or regularized solution may be preferable to the exact one. Regularization formalizes a trade-off between fidelity to the data and adherence to prior knowledge about the data-generating process such as smoothness or sparsity. The resulting estimator tends to be more useful, interpretable, and suitable as an input to other methods. In this paper, we propose new methodology for estimation and prediction under a linear model borrowing insights from the approximation literature. We explore these procedures from a statistical perspective and find that in many cases they improve both computational and statistical performance.
216 - Cheng Wang , Binyan Jiang 2018
The estimation of high dimensional precision matrices has been a central topic in statistical learning. However, as the number of parameters scales quadratically with the dimension $p$, many state-of-the-art methods do not scale well to solve problem s with a very large $p$. In this paper, we propose a very efficient algorithm for precision matrix estimation via penalized quadratic loss functions. Under the high dimension low sample size setting, the computation complexity of our algorithm is linear in both the sample size and the number of parameters. Such a computation complexity is in some sense optimal, as it is the same as the complexity needed for computing the sample covariance matrix. Numerical studies show that our algorithm is much more efficient than other state-of-the-art methods when the dimension $p$ is very large.
There are many scenarios such as the electronic health records where the outcome is much more difficult to collect than the covariates. In this paper, we consider the linear regression problem with such a data structure under the high dimensionality. Our goal is to investigate when and how the unlabeled data can be exploited to improve the estimation and inference of the regression parameters in linear models, especially in light of the fact that such linear models may be misspecified in data analysis. In particular, we address the following two important questions. (1) Can we use the labeled data as well as the unlabeled data to construct a semi-supervised estimator such that its convergence rate is faster than the supervised estimators? (2) Can we construct confidence intervals or hypothesis tests that are guaranteed to be more efficient or powerful than the supervised estimators? To address the first question, we establish the minimax lower bound for parameter estimation in the semi-supervised setting. We show that the upper bound from the supervised estimators that only use the labeled data cannot attain this lower bound. We close this gap by proposing a new semi-supervised estimator which attains the lower bound. To address the second question, based on our proposed semi-supervised estimator, we propose two additional estimators for semi-supervised inference, the efficient estimator and the safe estimator. The former is fully efficient if the unknown conditional mean function is estimated consistently, but may not be more efficient than the supervised approach otherwise. The latter usually does not aim to provide fully efficient inference, but is guaranteed to be no worse than the supervised approach, no matter whether the linear model is correctly specified or the conditional mean function is consistently estimated.
127 - Ding Xiang , Galin L. Jones 2017
We consider penalized regression models under a unified framework where the particular method is determined by the form of the penalty term. We propose a fully Bayesian approach that incorporates both sparse and dense settings and show how to use a t ype of model averaging approach to eliminate the nuisance penalty parameters and perform inference through the marginal posterior distribution of the regression coefficients. We establish tail robustness of the resulting estimator as well as conditional and marginal posterior consistency. We develop an efficient component-wise Markov chain Monte Carlo algorithm for sampling. Numerical results show that the method tends to select the optimal penalty and performs well in both variable selection and prediction and is comparable to, and often better than alternative methods. Both simulated and real data examples are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا