ﻻ يوجد ملخص باللغة العربية
In genome-wide association studies (GWAS), penalization is an important approach for identifying genetic markers associated with trait while mixed model is successful in accounting for a complicated dependence structure among samples. Therefore, penalized linear mixed model is a tool that combines the advantages of penalization approach and linear mixed model. In this study, a GWAS with multiple highly correlated traits is analyzed. For GWAS with multiple quantitative traits that are highly correlated, the analysis using traits marginally inevitably lose some essential information among multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed model that allows both the within-trait and between-trait variance components simultaneously for multiple traits. The proposed penalized-MTMM estimates variance components using an AI-REML method and conducts variable selection and point estimation simultaneously using group MCP and sparse group MCP. Best linear unbiased predictor (BLUP) is used to find predictive values and the Pearsons correlations between predictive values and their corresponding observations are used to evaluate prediction performance. Both prediction and selection performance of the proposed approach and its comparison with the uni-trait penalized-LMM are evaluated through simulation studies. We apply the proposed approach to a GWAS data from Genetic Analysis Workshop (GAW) 18.
Model fitting often aims to fit a single model, assuming that the imposed form of the model is correct. However, there may be multiple possible underlying explanatory patterns in a set of predictors that could explain a response. Model selection with
Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In simple cases, single polymorphic loci explain a significant fraction of the phenotype variability. However, many traits of interest appea
Clustering task of mixed data is a challenging problem. In a probabilistic framework, the main difficulty is due to a shortage of conventional distributions for such data. In this paper, we propose to achieve the mixed data clustering with a Gaussian
In this paper, we consider data consisting of multiple networks, each comprised of a different edge set on a common set of nodes. Many models have been proposed for the analysis of such multi-view network data under the assumption that the data views
Nonlinear Mixed effects models are hidden variables models that are widely used in many field such as pharmacometrics. In such models, the distribution characteristics of hidden variables can be specified by including several parameters such as covar