ترغب بنشر مسار تعليمي؟ اضغط هنا

CoCon: A Self-Supervised Approach for Controlled Text Generation

73   0   0.0 ( 0 )
 نشر من قبل Alvin Chan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pretrained Transformer-based language models (LMs) display remarkable natural language generation capabilities. With their immense potential, controlling text generation of such LMs is getting attention. While there are studies that seek to control high-level attributes (such as sentiment and topic) of generated text, there is still a lack of more precise control over its content at the word- and phrase-level. Here, we propose Content-Conditioner (CoCon) to control an LMs output text with a content input, at a fine-grained level. In our self-supervised approach, the CoCon block learns to help the LM complete a partially-observed text sequence by conditioning with content inputs that are withheld from the LM. Through experiments, we show that CoCon can naturally incorporate target content into generated texts and control high-level text attributes in a zero-shot manner.



قيم البحث

اقرأ أيضاً

Neural text generation has made tremendous progress in various tasks. One common characteristic of most of the tasks is that the texts are not restricted to some rigid formats when generating. However, we may confront some special text paradigms such as Lyrics (assume the music score is given), Sonnet, SongCi (classical Chinese poetry of the Song dynasty), etc. The typical characteristics of these texts are in three folds: (1) They must comply fully with the rigid predefined formats. (2) They must obey some rhyming schemes. (3) Although they are restricted to some formats, the sentence integrity must be guaranteed. To the best of our knowledge, text generation based on the predefined rigid formats has not been well investigated. Therefore, we propose a simple and elegant framework named SongNet to tackle this problem. The backbone of the framework is a Transformer-based auto-regressive language model. Sets of symbols are tailor-designed to improve the modeling performance especially on format, rhyme, and sentence integrity. We improve the attention mechanism to impel the model to capture some future information on the format. A pre-training and fine-tuning framework is designed to further improve the generation quality. Extensive experiments conducted on two collected corpora demonstrate that our proposed framework generates significantly better results in terms of both automatic metrics and the human evaluation.
Large transformer-based language models (LMs) trained on huge text corpora have shown unparalleled generation capabilities. However, controlling attributes of the generated language (e.g. switching topic or sentiment) is difficult without modifying t he model architecture or fine-tuning on attribute-specific data and entailing the significant cost of retraining. We propose a simple alternative: the Plug and Play Language Model (PPLM) for controllable language generation, which combines a pretrained LM with one or more simple attribute classifiers that guide text generation without any further training of the LM. In the canonical scenario we present, the attribute models are simple classifiers consisting of a user-specified bag of words or a single learned layer with 100,000 times fewer parameters than the LM. Sampling entails a forward and backward pass in which gradients from the attribute model push the LMs hidden activations and thus guide the generation. Model samples demonstrate control over a range of topics and sentiment styles, and extensive automated and human annotated evaluations show attribute alignment and fluency. PPLMs are flexible in that any combination of differentiable attribute models may be used to steer text generation, which will allow for diverse and creative applications beyond the examples given in this paper.
Given a document and a target aspect (e.g., a topic of interest), aspect-based abstractive summarization attempts to generate a summary with respect to the aspect. Previous studies usually assume a small pre-defined set of aspects and fall short of s ummarizing on other diverse topics. In this work, we study summarizing on arbitrary aspects relevant to the document, which significantly expands the application of the task in practice. Due to the lack of supervision data, we develop a new weak supervision construction method and an aspect modeling scheme, both of which integrate rich external knowledge sources such as ConceptNet and Wikipedia. Experiments show our approach achieves performance boosts on summarizing both real and synthetic documents given pre-defined or arbitrary aspects.
105 - Ping Yu , Ruiyi Zhang , Yang Zhao 2021
Data augmentation has been widely used to improve deep neural networks in many research fields, such as computer vision. However, less work has been done in the context of text, partially due to its discrete nature and the complexity of natural langu ages. In this paper, we propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation. Unlike most existing sentence-level augmentation strategies, which are only applied to specific models, our method is more general and could be easily adapted to any MLE-based training procedure. In addition, our framework allows task-specific evaluation metrics to be designed to flexibly control the generated sentences, for example, in terms of controlling vocabulary usage and avoiding nontrivial repetitions. Extensive experimental results demonstrate the superiority of our method on two synthetic and several standard real datasets, significantly improving related baselines.
We introduce a simple and efficient method, called Auxiliary Tuning, for adapting a pre-trained Language Model to a novel task; we demonstrate this approach on the task of conditional text generation. Our approach supplements the original pre-trained model with an auxiliary model that shifts the output distribution according to the target task. The auxiliary model is trained by adding its logits to the pre-trained model logits and maximizing the likelihood of the target task output. Our method imposes no constraints on the auxiliary architecture. In particular, the auxiliary model can ingest additional input relevant to the target task, independently from the pre-trained models input. Furthermore, mixing the models at the logits level provides a natural probabilistic interpretation of the method. Our method achieved similar results to training from scratch for several different tasks, while using significantly fewer resources for training; we share a specific example of text generation conditioned on keywords.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا