ترغب بنشر مسار تعليمي؟ اضغط هنا

Plug and Play Language Models: A Simple Approach to Controlled Text Generation

313   0   0.0 ( 0 )
 نشر من قبل Rosanne Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large transformer-based language models (LMs) trained on huge text corpora have shown unparalleled generation capabilities. However, controlling attributes of the generated language (e.g. switching topic or sentiment) is difficult without modifying the model architecture or fine-tuning on attribute-specific data and entailing the significant cost of retraining. We propose a simple alternative: the Plug and Play Language Model (PPLM) for controllable language generation, which combines a pretrained LM with one or more simple attribute classifiers that guide text generation without any further training of the LM. In the canonical scenario we present, the attribute models are simple classifiers consisting of a user-specified bag of words or a single learned layer with 100,000 times fewer parameters than the LM. Sampling entails a forward and backward pass in which gradients from the attribute model push the LMs hidden activations and thus guide the generation. Model samples demonstrate control over a range of topics and sentiment styles, and extensive automated and human annotated evaluations show attribute alignment and fluency. PPLMs are flexible in that any combination of differentiable attribute models may be used to steer text generation, which will allow for diverse and creative applications beyond the examples given in this paper.



قيم البحث

اقرأ أيضاً

93 - Florian Mai 2020
Text autoencoders are commonly used for conditional generation tasks such as style transfer. We propose methods which are plug and play, where any pretrained autoencoder can be used, and only require learning a mapping within the autoencoders embeddi ng space, training embedding-to-embedding (Emb2Emb). This reduces the need for labeled training data for the task and makes the training procedure more efficient. Crucial to the success of this method is a loss term for keeping the mapped embedding on the manifold of the autoencoder and a mapping which is trained to navigate the manifold by learning offset vectors. Evaluations on style transfer tasks both with and without sequence-to-sequence supervision show that our method performs better than or comparable to strong baselines while being up to four times faster.
There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational mo dels provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.
Text generation has become one of the most important yet challenging tasks in natural language processing (NLP). The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained langua ge models (PLMs). In this paper, we present an overview of the major advances achieved in the topic of PLMs for text generation. As the preliminaries, we present the general task definition and briefly describe the mainstream architectures of PLMs for text generation. As the core content, we discuss how to adapt existing PLMs to model different input data and satisfy special properties in the generated text. We further summarize several important fine-tuning strategies for text generation. Finally, we present several future directions and conclude this paper. Our survey aims to provide text generation researchers a synthesis and pointer to related research.
Adversarial training has been shown effective at endowing the learned representations with stronger generalization ability. However, it typically requires expensive computation to determine the direction of the injected perturbations. In this paper, we introduce a set of simple yet effective data augmentation strategies dubbed cutoff, where part of the information within an input sentence is erased to yield its restricted views (during the fine-tuning stage). Notably, this process relies merely on stochastic sampling and thus adds little computational overhead. A Jensen-Shannon Divergence consistency loss is further utilized to incorporate these augmented samples into the training objective in a principled manner. To verify the effectiveness of the proposed strategies, we apply cutoff to both natural language understanding and generation problems. On the GLUE benchmark, it is demonstrated that cutoff, in spite of its simplicity, performs on par or better than several competitive adversarial-based approaches. We further extend cutoff to machine translation and observe significant gains in BLEU scores (based upon the Transformer Base model). Moreover, cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.
Graph-to-text generation aims to generate fluent texts from graph-based data. In this paper, we investigate two recently proposed pretrained language models (PLMs) and analyze the impact of different task-adaptive pretraining strategies for PLMs in g raph-to-text generation. We present a study across three graph domains: meaning representations, Wikipedia knowledge graphs (KGs) and scientific KGs. We show that the PLMs BART and T5 achieve new state-of-the-art results and that task-adaptive pretraining strategies improve their performance even further. In particular, we report new state-of-the-art BLEU scores of 49.72 on LDC2017T10, 59.70 on WebNLG, and 25.66 on AGENDA datasets - a relative improvement of 31.8%, 4.5%, and 42.4%, respectively. In an extensive analysis, we identify possible reasons for the PLMs success on graph-to-text tasks. We find evidence that their knowledge about true facts helps them perform well even when the input graph representation is reduced to a simple bag of node and edge labels.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا