ﻻ يوجد ملخص باللغة العربية
Neural text generation has made tremendous progress in various tasks. One common characteristic of most of the tasks is that the texts are not restricted to some rigid formats when generating. However, we may confront some special text paradigms such as Lyrics (assume the music score is given), Sonnet, SongCi (classical Chinese poetry of the Song dynasty), etc. The typical characteristics of these texts are in three folds: (1) They must comply fully with the rigid predefined formats. (2) They must obey some rhyming schemes. (3) Although they are restricted to some formats, the sentence integrity must be guaranteed. To the best of our knowledge, text generation based on the predefined rigid formats has not been well investigated. Therefore, we propose a simple and elegant framework named SongNet to tackle this problem. The backbone of the framework is a Transformer-based auto-regressive language model. Sets of symbols are tailor-designed to improve the modeling performance especially on format, rhyme, and sentence integrity. We improve the attention mechanism to impel the model to capture some future information on the format. A pre-training and fine-tuning framework is designed to further improve the generation quality. Extensive experiments conducted on two collected corpora demonstrate that our proposed framework generates significantly better results in terms of both automatic metrics and the human evaluation.
Pretrained Transformer-based language models (LMs) display remarkable natural language generation capabilities. With their immense potential, controlling text generation of such LMs is getting attention. While there are studies that seek to control h
Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, w
Neural models for text generation require a softmax layer with proper token embeddings during the decoding phase. Most existing approaches adopt single point embedding for each token. However, a word may have multiple senses according to different co
Submodularity is desirable for a variety of objectives in content selection where the current neural encoder-decoder framework is inadequate. However, it has so far not been explored in the neural encoder-decoder system for text generation. In this w
The paper surveys evaluation methods of natural language generation (NLG) systems that have been developed in the last few years. We group NLG evaluation methods into three categories: (1) human-centric evaluation metrics, (2) automatic metrics that