ترغب بنشر مسار تعليمي؟ اضغط هنا

Nash Equilibrium Seeking under Directed Graphs

207   0   0.0 ( 0 )
 نشر من قبل Yutao Tang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we aim to develop distributed continuous-time algorithms under directed graphs to seek the Nash equilibrium of a noncooperative game. Motivated by the existing consensus-based designs in Gadjov and Pavel (2019), we present a distributed algorithm with a proportional gain for weight-balanced directed graphs. By further embedding a distributed estimator of the left eigenvector associated with zero eigenvalue of the graph Laplacian, we extend it to the case with arbitrary strongly connected directed graphs having possible unbalanced weights. In both cases, the Nash equilibrium is proven to be exactly reached with an exponential convergence rate.



قيم البحث

اقرأ أيضاً

We introduce a novel class of Nash equilibrium seeking dynamics for non-cooperative games with a finite number of players, where the convergence to the Nash equilibrium is bounded by a KL function with a settling time that can be upper bounded by a p ositive constant that is independent of the initial conditions of the players, and which can be prescribed a priori by the system designer. The dynamics are model-free, in the sense that the mathematical forms of the cost functions of the players are unknown. Instead, in order to update its own action, each player needs to have access only to real-time evaluations of its own cost, as well as to auxiliary states of neighboring players characterized by a communication graph. Stability and convergence properties are established for both potential games and strongly monotone games. Numerical examples are presented to illustrate our theoretical results.
In this paper we propose a new operator splitting algorithm for distributed Nash equilibrium seeking under stochastic uncertainty, featuring relaxation and inertial effects. Our work is inspired by recent deterministic operator splitting methods, des igned for solving structured monotone inclusion problems. The algorithm is derived from a forward-backward-forward scheme for solving structured monotone inclusion problems featuring a Lipschitz continuous and monotone game operator. To the best of our knowledge, this is the first distributed (generalized) Nash equilibrium seeking algorithm featuring acceleration techniques in stochastic Nash games without assuming cocoercivity. Numerical examples illustrate the effect of inertia and relaxation on the performance of our proposed algorithm.
With the proliferation of distributed generators and energy storage systems, traditional passive consumers in power systems have been gradually evolving into the so-called prosumers, i.e., proactive consumers, which can both produce and consume power . To encourage energy exchange among prosumers, energy sharing is increasingly adopted, which is usually formulated as a generalized Nash game (GNG). In this paper, a distributed approach is proposed to seek the Generalized Nash equilibrium (GNE) of the energy sharing game. To this end, we convert the GNG into an equivalent optimization problem. A Krasnoselski{v{i}}-Mann iteration type algorithm is thereby devised to solve the problem and consequently find the GNE in a distributed manner. The convergence of the proposed algorithm is proved rigorously based on the nonexpansive operator theory. The performance of the algorithm is validated by experiments with three prosumers, and the scalability is tested by simulations using 123 prosumers.
In this paper we consider the problem of finding a Nash equilibrium (NE) via zeroth-order feedback information in games with merely monotone pseudogradient mapping. Based on hybrid system theory, we propose a novel extremum seeking algorithm which co nverges to the set of Nash equilibria in a semi-global practical sense. Finally, we present two simulation examples. The first shows that the standard extremum seeking algorithm fails, while ours succeeds in reaching NE. In the second, we simulate an allocation problem with fixed demand.
119 - Jiawang Nie , Xindong Tang 2020
This paper studies Nash equilibrium problems that are given by polynomial functions. We formulate efficient polynomial optimization problems for computing Nash equilibria. The Lasserre type Moment-SOS relaxations are used to solve them. Under generic assumptions, the method can find a Nash equilibrium if there is one. Moreover, it can find all Nash equilibria if there are finitely many ones of them. The method can also detect nonexistence if there is no Nash equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا