ﻻ يوجد ملخص باللغة العربية
This paper studies Nash equilibrium problems that are given by polynomial functions. We formulate efficient polynomial optimization problems for computing Nash equilibria. The Lasserre type Moment-SOS relaxations are used to solve them. Under generic assumptions, the method can find a Nash equilibrium if there is one. Moreover, it can find all Nash equilibria if there are finitely many ones of them. The method can also detect nonexistence if there is no Nash equilibrium.
This paper concerns the generalized Nash equilibrium problem of polynomials (GNEPP). We apply the Gauss-Seidel method and Lasserre type Moment-SOS relaxations to solve GNEPPs. The convergence of the Gauss-Seidel method is known for some special GNEPP
This paper studies convex Generalized Nash Equilibrium Problems (GNEPs) that are given by polynomials. We use rational and parametric expressions for Lagrange multipliers to formulate efficient polynomial optimization for computing Generalized Nash E
In this paper, we aim to develop distributed continuous-time algorithms under directed graphs to seek the Nash equilibrium of a noncooperative game. Motivated by the existing consensus-based designs in Gadjov and Pavel (2019), we present a distribute
In this paper, we aim to design a distributed approximate algorithm for seeking Nash equilibria of an aggregative game. Due to the local set constraints of each player, projectionbased algorithms have been widely employed for solving such problems ac
We introduce a novel class of Nash equilibrium seeking dynamics for non-cooperative games with a finite number of players, where the convergence to the Nash equilibrium is bounded by a KL function with a settling time that can be upper bounded by a p