ترغب بنشر مسار تعليمي؟ اضغط هنا

Nash Equilibrium Problems of Polynomials

120   0   0.0 ( 0 )
 نشر من قبل Jiawang Nie
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies Nash equilibrium problems that are given by polynomial functions. We formulate efficient polynomial optimization problems for computing Nash equilibria. The Lasserre type Moment-SOS relaxations are used to solve them. Under generic assumptions, the method can find a Nash equilibrium if there is one. Moreover, it can find all Nash equilibria if there are finitely many ones of them. The method can also detect nonexistence if there is no Nash equilibrium.



قيم البحث

اقرأ أيضاً

This paper concerns the generalized Nash equilibrium problem of polynomials (GNEPP). We apply the Gauss-Seidel method and Lasserre type Moment-SOS relaxations to solve GNEPPs. The convergence of the Gauss-Seidel method is known for some special GNEPP s, such as generalized potential games (GPGs). We give a sufficient condition for GPGs and propose a numerical certificate, based on Putinars Positivstellensatz. Numerical examples for both convex and nonconvex GNEPPs are given for demonstrating the efficiency of the proposed method.
117 - Jiawang Nie , Xindong Tang 2021
This paper studies convex Generalized Nash Equilibrium Problems (GNEPs) that are given by polynomials. We use rational and parametric expressions for Lagrange multipliers to formulate efficient polynomial optimization for computing Generalized Nash E quilibria (GNEs). The Moment-SOS hierarchy of semidefinite relaxations are used to solve the polynomial optimization. Under some general assumptions, we prove the method can find a GNE if there exists one, or detect nonexistence of GNEs. Numerical experiments are presented to show the efficiency of the method.
206 - Yutao Tang , Peng Yi 2020
In this paper, we aim to develop distributed continuous-time algorithms under directed graphs to seek the Nash equilibrium of a noncooperative game. Motivated by the existing consensus-based designs in Gadjov and Pavel (2019), we present a distribute d algorithm with a proportional gain for weight-balanced directed graphs. By further embedding a distributed estimator of the left eigenvector associated with zero eigenvalue of the graph Laplacian, we extend it to the case with arbitrary strongly connected directed graphs having possible unbalanced weights. In both cases, the Nash equilibrium is proven to be exactly reached with an exponential convergence rate.
In this paper, we aim to design a distributed approximate algorithm for seeking Nash equilibria of an aggregative game. Due to the local set constraints of each player, projectionbased algorithms have been widely employed for solving such problems ac tually. Since it may be quite hard to get the exact projection in practice, we utilize inscribed polyhedrons to approximate local set constraints, which yields a related approximate game model. We first prove that the Nash equilibrium of the approximate game is the $epsilon$-Nash equilibrium of the original game, and then propose a distributed algorithm to seek the $epsilon$-Nash equilibrium, where the projection is then of a standard form in quadratic programming. With the help of the existing developed methods for solving quadratic programming, we show the convergence of the proposed algorithm, and also discuss the computational cost issue related to the approximation. Furthermore, based on the exponential convergence of the algorithm, we estimate the approximation accuracy related to $epsilon$. Additionally, we investigate the computational cost saved by approximation on numerical examples.
We introduce a novel class of Nash equilibrium seeking dynamics for non-cooperative games with a finite number of players, where the convergence to the Nash equilibrium is bounded by a KL function with a settling time that can be upper bounded by a p ositive constant that is independent of the initial conditions of the players, and which can be prescribed a priori by the system designer. The dynamics are model-free, in the sense that the mathematical forms of the cost functions of the players are unknown. Instead, in order to update its own action, each player needs to have access only to real-time evaluations of its own cost, as well as to auxiliary states of neighboring players characterized by a communication graph. Stability and convergence properties are established for both potential games and strongly monotone games. Numerical examples are presented to illustrate our theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا