ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dubrovin threefold of an algebraic curve

263   0   0.0 ( 0 )
 نشر من قبل Bernd Sturmfels
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solutions to the Kadomtsev-Petviashvili equation that arise from a fixed complex algebraic curve are parametrized by a threefold in a weighted projective space, which we name after Boris Dubrovin. Current methods from nonlinear algebra are applied to study parametrizations and defining ideals of Dubrovin threefolds. We highlight the dichotomy between transcendental representations and exact algebraic computations. Our main result on the algebraic side is a toric degeneration of the Dubrovin threefold into the product of the underlying canonical curve and a weighted projective plane.



قيم البحث

اقرأ أيضاً

172 - Huai-liang. Chang , Jun Li 2012
Li-Zingers hyperplane theorem states that the genus one GW-invariants of the quintic threefold is the sum of its reduced genus one GW-invariants and 1/12 multiplies of its genus zero GW-invariants. We apply the Guffin-Sharpe-Wittens theory (GSW theor y) to give an algebro-geometric proof of the hyperplane theorem, including separation of contributions and computation of 1/12.
In this paper we prove that the etale sheafification of the functor arising from the quotient of an algebraic supergroup by a closed subsupergroup is representable by a smooth superscheme.
82 - Roman M. Fedorov 2004
We study a generalization of the isomonodromic deformation to the case of connections with irregular singularities. We call this generalization Isostokes Deformation. A new deformation parameter arises: one can deform the formal normal forms of conne ctions at irregular points. We study this part of the deformation, giving an algebraic description. Then we show how to use loop groups and hypercohomology to write explicit hamiltonians. We work on an arbitrary complete algebraic curve, the structure group is an arbitrary semisimiple group.
This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing to formulate perturbative re normalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited.
394 - M. Leo , R.A. Leo , G. Soliani 1999
An algebraic method is devised to look for non-local symmetries of the pseudopotential type of nonlinear field equations. The method is based on the use of an infinite-dimensional subalgebra of the prolongation algebra $L$ associated with the equatio ns under consideration. Our approach, which is applied by way of example to the Dym and the Korteweg-de Vries equations, allows us to obtain a general formula for the infinitesimal operator of the non-local symmetries expressed in terms of elements of $L$. The method could be exploited to investigate the symmetry properties of other nonlinear field equations possessing nontrivial prolongations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا