ترغب بنشر مسار تعليمي؟ اضغط هنا

An algebraic Birkhoff decomposition for the continuous renormalization group

76   0   0.0 ( 0 )
 نشر من قبل Pierre Martinetti
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing to formulate perturbative renormalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited.



قيم البحث

اقرأ أيضاً

159 - Shun Zhou 2020
Three-flavor neutrino oscillations in matter can be described by three effective neutrino masses $widetilde{m}^{}_i$ (for $i = 1, 2, 3$) and the effective mixing matrix $V^{}_{alpha i}$ (for $alpha = e, mu, tau$ and $i = 1, 2, 3$). When the matter pa rameter $a equiv 2sqrt{2} G^{}_{rm F} N^{}_e E$ is taken as an independent variable, a complete set of first-order ordinary differential equations for $widetilde{m}^2_i$ and $|V^{}_{alpha i}|^2$ have been derived in the previous works. In the present paper, we point out that such a system of differential equations possesses both the continuous symmetries characterized by one-parameter Lie groups and the discrete symmetry associated with the permutations of three neutrino mass eigenstates. The implications of these symmetries for solving the differential equations and looking for differential invariants are discussed.
61 - Peter M. Lavrov 2020
The gauge dependence problem of alternative flow equation for the functional renormalization group is studied. It is shown that the effective two-particle irreducible effective action depends on gauges at any value of IR parameter $k$. The situation with gauge dependence is similar to the standard formulation based on the effective one-particle irreducible effective action.
394 - M. Leo , R.A. Leo , G. Soliani 1999
An algebraic method is devised to look for non-local symmetries of the pseudopotential type of nonlinear field equations. The method is based on the use of an infinite-dimensional subalgebra of the prolongation algebra $L$ associated with the equatio ns under consideration. Our approach, which is applied by way of example to the Dym and the Korteweg-de Vries equations, allows us to obtain a general formula for the infinitesimal operator of the non-local symmetries expressed in terms of elements of $L$. The method could be exploited to investigate the symmetry properties of other nonlinear field equations possessing nontrivial prolongations.
123 - Peter M. Lavrov 2010
The renormalization of general gauge theories on flat and curved space-time backgrounds is considered within the Sp(2)-covariant quantization method. We assume the existence of a gauge-invariant and diffeomorphism invariant regularization. Using the Sp(2)-covariant formalism one can show that the theory possesses gauge invariant and diffeomorphism invariant renormalizability to all orders in the loop expansion and the extended BRST symmetry after renormalization is preserved. The advantage of the Sp(2)-method compared to the standard Batalin-Vilkovisky approach is that, in reducible theories, the structure of ghosts and ghosts for ghosts and auxiliary fields is described in terms of irreducible representations of the Sp(2) group. This makes the presentation of solutions to the master equations in more simple and systematic way because they are Sp(2)- scalars.
Renormalization group calculations are used to give exact solutions for rigidity percolation on hierarchical lattices. Algebraic scaling transformations for a simple example in two dimensions produce a transition of second order, with an unstable cri tical point and associated scaling laws. Values are provided for the order parameter exponent $beta = 0.0775$ associated with the spanning rigid cluster and also for $d u = 3.533$ which is associated with an anomalous lattice dimension $d$ and the divergence in the correlation length near the transition. In addition we argue that the number of floppy modes $F$ plays the role of a free energy and hence find the exponent $alpha$ and establish hyperscaling. The exact analytical procedures demonstrated on the chosen example readily generalize to wider classes of hierarchical lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا