ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the mathematical analysis of some Diffuse Interface systems which model the motion of a two-phase incompressible fluid mixture in presence of capillarity effects in a bounded smooth domain. First, we consider a two-fluids parabolic-hyperbolic model that accounts for unmatched densities and viscosities without diffusive dynamics at the interface. We prove the existence and uniqueness of local solutions. Next, we introduce dissipative mixing effects by means of the mass-conserving Allen-Cahn approximation. In particular, we consider the resulting nonhomogeneous Navier- Stokes-Allen-Cahn and Euler-Allen-Cahn systems with the physically relevant Flory-Huggins potential. We study the existence and uniqueness of global weak and strong solutions and their separation property. In our analysis we combine energy and entropy estimates, a novel end-point estimate of the product of two functions, and a logarithmic type Gronwall argument.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett
In this paper, we propose and analyze a diffuse interface model for inductionless magnetohydrodynamic fluids. The model couples a convective Cahn-Hilliard equation for the evolution of the interface, the Navier-Stokes system for fluid flow and the po
This paper is concerned with a fully nonlinear variant of the Allen-Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. Main purposes of the paper are to prove the well-posedness, smoothing effe
This article is mainly devoted to the asymptotic analysis of a fractional version of the (elliptic) Allen-Cahn equation in a bounded domain $Omegasubsetmathbb{R}^n$, with or without a source term in the right hand side of the equation (commonly calle
We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective nonlocal Cahn-Hilliard equation with non-