ﻻ يوجد ملخص باللغة العربية
This article is mainly devoted to the asymptotic analysis of a fractional version of the (elliptic) Allen-Cahn equation in a bounded domain $Omegasubsetmathbb{R}^n$, with or without a source term in the right hand side of the equation (commonly called chemical potential). Compare to the usual Allen-Cahn equation, the Laplace operator is here replaced by the fractional Laplacian $(-Delta)^s$ with $sin(0,1/2)$, as defined in Fourier space. In the singular limit $varepsilonto 0$, we show that arbitrary solutions with uniformly bounded energy converge both in the energetic and geometric sense to surfaces of prescribed nonlocal mean curvature in $Omega$ whenever the chemical potential remains bounded in suitable Sobolev spaces. With no chemical potential, the notion of surface of prescribed nonlocal mean curvature reduces to the stationary version of the nonlocal minimal surfaces introduced by L.A. Caffarelli, J.M. Roquejoffre, and O. Savin. Under the same Sobolev regularity assumption on the chemical potential, we also prove that surfaces of prescribed nonlocal mean curvature have a Minkowski codimension equal to one, and that the associated sets have a locally finite fractional $2s^prime$-perimeter in $Omega$ for every $s^primein(0,1/2)$.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett
In this paper we prove the uniqueness of the saddle-shaped solution to the semilinear nonlocal elliptic equation $(-Delta)^gamma u = f(u)$ in $mathbb R^{2m}$, where $gamma in (0,1)$ and $f$ is of Allen-Cahn type. Moreover, we prove that this solution
This paper is concerned with a fully nonlinear variant of the Allen-Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. Main purposes of the paper are to prove the well-posedness, smoothing effe
We establish existence and non-existence results for entire solutions to the fractional Allen-Cahn equation in $mathbb R^3$, which vanish on helicoids and are invariant under screw-motion. In addition, we prove that helicoids are surfaces with vanishing nonlocal mean curvature.
In this paper, we propose and analyze a time-stepping method for the time fractional Allen-Cahn equation. The key property of the proposed method is its unconditional stability for general meshes, including the graded mesh commonly used for this type