ترغب بنشر مسار تعليمي؟ اضغط هنا

Allen-Cahn equation with strong irreversibility

62   0   0.0 ( 0 )
 نشر من قبل Goro Akagi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with a fully nonlinear variant of the Allen-Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. Main purposes of the paper are to prove the well-posedness, smoothing effect and comparison principle, to provide an equivalent reformulation of the equation as a parabolic obstacle problem and to reveal long-time behaviors of solutions. More precisely, by deriving emph{partial} energy-dissipation estimates, a global attractor is constructed in a metric setting, and it is also proved that each solution $u(x,t)$ converges to a solution of an elliptic obstacle problem as $t to +infty$.



قيم البحث

اقرأ أيضاً

We consider a system of stochastic Allen-Cahn equations on a finite network represented by a finite graph. On each edge in the graph a multiplicative Gaussian noise driven stochastic Allen-Cahn equation is given with possibly different potential barr ier heights supplemented by a continuity condition and a Kirchhoff-type law in the vertices. Using the semigroup approach for stochastic evolution equations in Banach spaces we obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph. We also prove more precise space-time regularity of the solution.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett ing a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.
122 - Tim Laux , Thilo Simon 2016
We present a convergence result for solutions of the vector-valued Allen-Cahn Equation. In the spirit of the work of Luckhaus and Sturzenhecker we establish convergence towards a distributional formulation of multi-phase mean-curvature flow using set s of finite perimeter. Like their result, ours relies on the assumption that the time-integrated energies of the approximations converge to those of the limit. Furthermore, we apply our proof to two variants of the equation, incorporating external forces and a volume constraint.
This article is mainly devoted to the asymptotic analysis of a fractional version of the (elliptic) Allen-Cahn equation in a bounded domain $Omegasubsetmathbb{R}^n$, with or without a source term in the right hand side of the equation (commonly calle d chemical potential). Compare to the usual Allen-Cahn equation, the Laplace operator is here replaced by the fractional Laplacian $(-Delta)^s$ with $sin(0,1/2)$, as defined in Fourier space. In the singular limit $varepsilonto 0$, we show that arbitrary solutions with uniformly bounded energy converge both in the energetic and geometric sense to surfaces of prescribed nonlocal mean curvature in $Omega$ whenever the chemical potential remains bounded in suitable Sobolev spaces. With no chemical potential, the notion of surface of prescribed nonlocal mean curvature reduces to the stationary version of the nonlocal minimal surfaces introduced by L.A. Caffarelli, J.M. Roquejoffre, and O. Savin. Under the same Sobolev regularity assumption on the chemical potential, we also prove that surfaces of prescribed nonlocal mean curvature have a Minkowski codimension equal to one, and that the associated sets have a locally finite fractional $2s^prime$-perimeter in $Omega$ for every $s^primein(0,1/2)$.
140 - Eleonora Cinti , Juan Davila , 2015
We establish existence and non-existence results for entire solutions to the fractional Allen-Cahn equation in $mathbb R^3$, which vanish on helicoids and are invariant under screw-motion. In addition, we prove that helicoids are surfaces with vanishing nonlocal mean curvature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا