ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations

143   0   0.0 ( 0 )
 نشر من قبل Giulio Schimperna
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After setting a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.



قيم البحث

اقرأ أيضاً

Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well.
We describe a functional framework suitable to the analysis of the Cahn-Hilliard equation on an evolving surface whose evolution is assumed to be given textit{a priori}. The model is derived from balance laws for an order parameter with an associated Cahn-Hilliard energy functional and we establish well-posedness for general regular potentials, satisfying some prescribed growth conditions, and for two singular nonlinearities -- the thermodynamically relevant logarithmic potential and a double obstacle potential. We identify, for the singular potentials, necessary conditions on the initial data and the evolution of the surfaces for global-in-time existence of solutions, which arise from the fact that integrals of solutions are preserved over time, and prove well-posedness for initial data on a suitable set of admissible initial conditions. We then briefly describe an alternative derivation leading to a model that instead preserves a weighted integral of the solution, and explain how our arguments can be adapted in order to obtain global-in-time existence without restrictions on the initial conditions. Some illustrative examples and further research directions are given in the final sections.
The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$, while the latter rules evolution of $varphi$, the difference of the (relative) concentrations of the two phases. The two equations are known as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman equation is a Stokes-like equation with a forcing term (Korteweg force) which is proportional to $mu ablavarphi$, where $mu$ is the chemical potential. When the viscosity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS) system. Both systems have been studied from the theoretical and the numerical viewpoints. However, theoretical results on the CHHS system are still rather incomplete. For instance, uniqueness of weak solutions is unknown even in 2D. Here we replace the usual CH equation with its physically more relevant nonlocal version. This choice allows us to prove more about the corresponding nonlocal CHHS system. More precisely, we first study well-posedness for the CHB system, endowed with no-slip and no-flux boundary conditions. Then, existence of a weak solution to the CHHS system is obtained as a limit of solutions to the CHB system. Stronger assumptions on the initial datum allow us to prove uniqueness for the CHHS system. Further regularity properties are obtained by assuming additional, though reasonable, assumptions on the interaction kernel. By exploiting these properties, we provide an estimate for the difference between the solution to the CHB system and the one to the CHHS system with respect to viscosity.
We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binar y alloys with induced reaction and type-I superconductors. The second one is the Cahn-Hilliard type equation introduced by Bertozzi et al. to describe image inpainting. Here we take a free energy functional which accounts for nonlocal interactions. Our choice is motivated by the work of Giacomin and Lebowitz who showed that the rigorous physical derivation of the Cahn-Hilliard equation leads to consider nonlocal functionals. The equations also have a transport term with a given velocity field and are subject to a homogenous Neumann boundary condition for the chemical potential, i.e., the first variation of the free energy functional. We first establish the well-posedness of the corresponding initial and boundary value problems in a weak setting. Then we consider such problems as dynamical systems and we show that they have bounded absorbing sets and global attractors.
This paper deals with the Cauchy-Dirichlet problem for the fractional Cahn-Hilliard equation. The main results consist of global (in time) existence of weak solutions, characterization of parabolic smoothing effects (implying under proper condition e ventual boundedness of trajectories), and convergence of each solution to a (single) equilibrium. In particular, to prove the convergence result, a variant of the so-called L ojasiewicz-Simon inequality is provided for the fractional Dirichlet Laplacian and (possibly) non-analytic (but $C^1$) nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا