ﻻ يوجد ملخص باللغة العربية
In the paper, we study the properties of the top-quark $overline{rm MS}$ running mass computed from its on-shell mass by using both the four-loop $overline{rm MS}$-on-shell relation and the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct magnitude of the strong running coupling of the perturbative series, its prediction avoids the conventional renormalization scale ambiguity, and thus a more precise pQCD prediction can be achieved. After applying the PMC to the four-loop $overline{rm MS}$-on-shell relation and taking the top-quark on-shell mass $M_t=172.9pm0.4$ GeV as an input, we obtain the renormalization scale-invariant $overline{rm MS}$ running mass at the scale $m_t$, e.g., $m_t(m_t)simeq 162.6pm 0.4$ GeV, in which the error is the squared average of those from $Delta alpha_s(M_Z)$, $Delta M_t$, and the approximate error from the uncalculated five-loop terms predicted by using the Pad{e} approximation approach.
We consider the effects of quark masses to the perturbative thrust in $e^+e^-$ annihilation. In particular we show that perturbative power corrections resulting from non-zero quark masses considerably alters the size of the non-perturbative power cor
We investigate the invariant-mass distribution of top-quark pairs near the $2m_t$ threshold, which has strong impact on the determination of the top-quark mass $m_t$. We show that higher-order non-relativistic corrections lead to large contributions
We determine to order alpha^3 the so-called residual mass in the lattice regularisation of the Heavy Quark Effective Theory for Nf=2. Our (gauge-invariant) strategy makes use of Numerical Stochastic Perturbation Theory to compute the static interquar
The ALPHA collaboration aims to determine $alpha_s(m_Z)$ with a total error below the percent level. A further step towards this goal can be taken by combining results from the recent simulations of 2+1-flavour QCD by the CLS initiative with a number
The next-to-next-to-leading order (NNLO) pQCD prediction for the $gammagamma^* to eta_c$ form factor was evaluated in 2015 using nonrelativistic QCD (NRQCD). A strong discrepancy between the NRQCD prediction and the BaBar measurements was observed. U