ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant-mass distribution of top-quark pairs and top-quark mass determination

89   0   0.0 ( 0 )
 نشر من قبل Li Lin Yang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the invariant-mass distribution of top-quark pairs near the $2m_t$ threshold, which has strong impact on the determination of the top-quark mass $m_t$. We show that higher-order non-relativistic corrections lead to large contributions which are not included in the state-of-the-art theoretical predictions. We derive a factorization formula to resum such corrections to all orders in the strong-coupling, and calculate necessary ingredients to perform the resummation at next-to-leading power. We combine the resummation with fixed-order results and present phenomenologically relevant numeric results. We find that the resummation effect significantly enhances the differential cross section in the threshold region, and makes the theoretical prediction more compatible with experimental data. We estimate that using our prediction in the determination of $m_t$ will lead to a value closer to the result of direct measurement.



قيم البحث

اقرأ أيضاً

81 - A.P. Heinson 2006
First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collab orations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quarks mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.
We investigate top quark pair production near the threshold where the pair invariant mass $M_{tbar{t}}$ approaches $2m_t$, which provides sensitive observables to extract the top quark mass $m_t$. Using the effective field theory methods, we derive a factorization and resummation formula for kinematic distributions in the threshold limit up to the next-to-leading power, which resums higher order Coulomb corrections to all orders in the strong coupling constant. Our formula is similar to those in the literature but differs in several important aspects. We apply our formula to the $M_{tbar{t}}$ distribution, as well as to the double differential cross section with respect to $M_{tbar{t}}$ and the rapidity of the $tbar{t}$ pair. We find that the resummation effects significantly increase the cross sections near the threshold, and lead to predictions better compatible with experimental data than the fixed-order ones. We demonstrate that incorporating resummation effects in the top quark mass determination can shift the extracted value of $m_t$ by as large as 1.4 GeV. The shift is much larger than the estimated uncertainties in previous experimental studies, and leads to a value of the top quark pole mass more consistent with the current world average.
We present a precision measurement of the top-quark mass using the full sample of Tevatron $sqrt{s}=1.96$ TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 $fb^{-1}$. Using a sample of $tbar{t}$ candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the $W$ boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with {it in situ} calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, $mtop = 172.85 $pm$ 0.71 (stat) $pm$ 0.85 (syst) GeV/c^{2}.$
148 - Scott S. Snyder 2009
We present measurements of the top quark mass based on 3.6 fb^-1 of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We present results in the dilepton and lepton+jets final states. We also present the measurement of the mass difference between t and tbar quarks observed in lepton+jets final states of ttbar events in 1 fb^-1 of data.
We propose a new method to measure a theoretically well-defined top quark mass at the LHC. This method is based on the weight function method, which we proposed in our preceding paper. It requires only lepton energy distribution and is basically inde pendent of the production process of the top quark. We perform a simulation analysis of the top quark mass reconstruction with $tbar{t}$ pair production and lepton+jets decay channel at the leading order. The estimated statistical error of the top quark mass is about $0.4$ GeV with an integrated luminosity of $100$ fb$^{-1}$ at $sqrt{s}=14$ TeV. We also estimate some of the major systematic uncertainties and find that they are under good control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا