ترغب بنشر مسار تعليمي؟ اضغط هنا

A status update on the determination of ${Lambda}_{overline{rm MS}}^{N_{rm f}=3}$ by the ALPHA collaboration

111   0   0.0 ( 0 )
 نشر من قبل Stefan Sint
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The ALPHA collaboration aims to determine $alpha_s(m_Z)$ with a total error below the percent level. A further step towards this goal can be taken by combining results from the recent simulations of 2+1-flavour QCD by the CLS initiative with a number of tools developed over the years: renormalized couplings in finite volume schemes, recursive finite size techniques, two-loop renormalized perturbation theory and the (improved) gradient flow on the lattice. We sketch the strategy, which involves both the standard SF coupling in the high energy regime and a gradient flow coupling at low energies. This implies the need for matching both schemes at an intermediate switching scale, $L_{rm swi}$, which we choose roughly in the range 2-4 GeV. In this contribution we present a preliminary result for this matching procedure, and we then focus on our almost final results for the scale evolution of the SF coupling from $L_{rm swi}$ towards the perturbative regime, where we extract the $N_{rm f} = 3$ ${Lambda}$-parameter, ${Lambda}_{overline{rm MS}}^{N_{rm f}=3}$, in units of $L_{rm swi}$ . Connecting $L_{rm swi}$ and thus the ${Lambda}$-parameter to a hadronic scale such as $F_K$ requires 2 further ingredients: first, the connection of $L_{rm swi}$ to $L_{rm max}$ using a few steps with the step-scaling function of the gradient flow coupling, and, second, the continuum extrapolation of $L_{rm max} F_K$.



قيم البحث

اقرأ أيضاً

We study the nature of the finite temperature phase transition for three-flavor QCD. In particular we investigate the location of the critical endpoint along the three flavor symmetric line in the light quark mass region of the Columbia plot. In the study, the Iwasaki gauge action and the nonperturvatively O($a$) improved Wilson-Clover fermion action are employed. We newly generate data at $N_{rm t}=12$ and set an upper bound of the critical pseudoscalar meson mass in the continuum limit $m_{rm PS,E}lesssim 110$MeV.
We investigate the phase structure of 3-flavor QCD in the presence of finite quark chemical potential by using Wilson-Clover fermions. To deal with the complex action with finite density, we adopt the phase reweighting method. In order to survey a wi de parameter region, we employ the multi-parameter reweighting method as well as the multi-ensemble reweighting method. Especially, we focus on locating the critical end point that characterizes the phase structure. It is estimated by the kurtosis intersection method for the quark condensate. For Wilson-type fermions, the correspondence between bare parameters and physical parameters is indirect, thus we present a strategy to transfer the bare parameter phase structure to the physical one. We conclude that the curvature with respect to the chemical potential is positive. This implies that, if one starts from a quark mass in the region of crossover at zero chemical potential, one would encounter a first-order phase transition when one raises the chemical potential.
We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $Lambda_overline{MS}^{(3)}=332(14)$~MeV is translated to $alpha_overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark thresholds. The error of this perturbative step is discussed and estimated as $0.0002$.
The ${rm SU}(3)$ pure gauge theory exhibits a first-order thermal deconfinement transition due to spontaneous breaking of its global $Z_3$ center symmetry. When heavy dynamical quarks are added, this symmetry is broken explicitly and the transition w eakens with decreasing quark mass until it disappears at a critical point. We compute the critical hopping parameter and the associated pion mass for lattice QCD with $N_f=2$ degenerate standard Wilson fermions on $N_tauin{6,8,10}$ lattices, corresponding to lattice spacings $a=0.12, {rm fm}$, $a=0.09, {rm fm}$, $a=0.07, {rm fm}$, respectively. Significant cut-off effects are observed, with the first-order region growing as the lattice gets finer. While current lattices are still too coarse for a continuum extrapolation, we estimate $m_pi^capprox 4 {rm GeV}$ with a remaining systematic error of $sim 20%$. Our results allow to assess the accuracy of the LO and NLO hopping expanded fermion determinant used in the literature for various purposes. We also provide a detailed investigation of the statistics required for this type of calculation, which is useful for similar investigations of the chiral transition.
We present results by the ALPHA collaboration for the $Lambda$-parameter in 3-flavour QCD and the strong coupling constant at the electroweak scale, $alpha_s(m_Z)$, in terms of hadronic quantities computed on the CLS gauge configurations. The first p art of this proceedings contribution contains a review of published material cite{Brida:2016flw,DallaBrida:2016kgh} and yields the $Lambda$-parameter in units of a low energy scale, $1/L_{rm had}$. We then discuss how to determine this scale in physical units from experimental data for the pion and kaon decay constants. We obtain $Lambda_{overline{rm MS}}^{(3)} = 332(14)$ MeV which translates to $alpha_s(M_Z)=0.1179(10)(2)$ using perturbation theory to match between 3-, 4- and 5-flavour QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا