ﻻ يوجد ملخص باللغة العربية
We determine to order alpha^3 the so-called residual mass in the lattice regularisation of the Heavy Quark Effective Theory for Nf=2. Our (gauge-invariant) strategy makes use of Numerical Stochastic Perturbation Theory to compute the static interquark potential where the above mentioned mass term appears as an additive contribution. We discuss how the new coefficient we compute in the expansion of the residual mass can improve the determination of the (MS bar) mass of the b-quark from lattice simulations of the Heavy Quark Effective Theory.
We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $
We present an evaluation of the quark mass renormalization factor for Nf=2+1 QCD. The Schroedinger functional scheme is employed as the intermediate scheme to carry out non-perturbative running from the low energy region, where renormalization of bar
We present a determination of the b-quark mass accurate through O(alpha_s^2) in perturbation theory and including partial contributions at O(alpha_s^3). Nonperturbative input comes from the calculation of the Upsilon and B_s energies in lattice QCD i
The use of Heavy Quark Effective Theory (HQET) on the lattice as an approach to B-physics phenomenology is based on a non-perturbative matching of HQET to QCD in finite volume. As a first step to apply the underlying strategy in the three-flavor ($N_
We present the results of a lattice QCD calculation of the average up-down and strange quark masses and of the light meson pseudoscalar decay constants with Nf=2 dynamical fermions. The simulation is carried out at a single value of the lattice spaci