ﻻ يوجد ملخص باللغة العربية
In string percolation model, the study of colliding systems at high energies is based on a continuum percolation theory in two dimensions where the number of strings distributed in the surface of interest is strongly determined by the size and the energy of the colliding particles. It is also expected that the surface where the disks are lying be finite, defining a system without periodic boundary conditions. In this work, we report modifications to the fraction of the area covered by disks in continuum percolating systems due to a finite number of disks and bounded by different geometries: circle, ellipse, triangle, square and pentagon, which correspond to the first Fourier modes of the shape fluctuation of the initial state after the particle collision. We find that the deviation of the fraction of area covered by disks from its corresponding value in the thermodynamic limit satisfies a universal behavior, where the free parameters depend on the density profile, number of disks and the shape of the boundary. Consequently, it is also found that the color suppression factor of the string percolation model is modified by a damping function related to the small-bounded effects. Corrections to the temperature and the speed of sound defined in string systems are also shown for small and elliptically bounded systems.
Using the randomized algorithm method developed by Duminil-Copin, Raoufi, Tassion (2019b) we exhibit sharp phase transition for the confetti percolation model. This provides an alternate proof that the critical parameter for percolation in this model
Discontinuous transition is observed in the equilibrium cluster properties of a percolation model with suppressed cluster growth as the growth parameter g0 is tuned to the critical threshold at sufficiently low initial seed concentration rho in contr
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of a
The ranges of transmission of the mobiles in a Mobile Ad-hoc Network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How
We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions around three exactly solvable points and exact dia