ترغب بنشر مسار تعليمي؟ اضغط هنا

Percolation-based precursors of transitions in extended systems

59   0   0.0 ( 0 )
 نشر من قبل Emilio Hernandez-Garcia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the systems time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the systems tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Nino phenomenon.



قيم البحث

اقرأ أيضاً

In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that may lead to a total collapse of the whole system in a form of an abrupt first order transition. When the fraction of initial failed nodes $1-p$ reaches criticality, $p=p_c$, the abrupt collapse occurs by spontaneous cascading failures. At this stage, the giant component decreases slowly in a plateau form and the number of iterations in the cascade, $tau$, diverges. The origin of this plateau and its increasing with the size of the system remained unclear. Here we find that simultaneously with the abrupt first order transition a spontaneous second order percolation occurs during the cascade of iterative failures. This sheds light on the origin of the plateau and on how its length scales with the size of the system. Understanding the critical nature of the dynamical process of cascading failures may be useful for designing strategies for preventing and mitigating catastrophic collapses.
392 - F. Ginelli , R. Livi , A. Politi 2002
We study the nature of the synchronization transition in spatially extended systems by discussing a simple stochastic model. An analytic argument is put forward showing that, in the limit of discontinuous processes, the transition belongs to the dire cted percolation (DP) universality class. The analysis is complemented by a detailed investigation of the dependence of the first passage time for the amplitude of the difference field on the adopted threshold. We find the existence of a critical threshold separating the regime controlled by linear mechanisms from that controlled by collective phenomena. As a result of this analysis we conclude that the synchronization transition belongs to the DP class also in continuous models. The conclusions are supported by numerical checks on coupled map lattices too.
We study the nonequilibrium dynamics of the extended toric code model (both ordered and disordered) to probe the existence of the dynamical quantum phase transitions (DQPTs). We show that in the case of the ordered toric code model, the zeros of Losc hmidt overlap (generalized partition function) occur at critical times when DQPTs occur, which is confirmed by the nonanalyticities in the dynamical counter-part of the free-energy density. Moreover, we show that DQPTs occur for any non-zero field strength if the initial state is the excited state of the toric code model. In the disordered case, we show that it is imperative to study the behavior of the first time derivative of the dynamical free-energy density averaged over all the possible configurations, to characterize the occurrence of a DQPTs in the disordered toric code model since the disorder parameter itself acts as a new artificial dimension. We also show that for the case where anyonic excitations are present in the initial state, the conditions for a DQPTs to occur are the same as what happens in the absence of any excitation.
400 - John Cardy 2007
After a brief introduction to the concept of entanglement in quantum systems, I apply these ideas to many-body systems and show that the von Neumann entropy is an effective way of characterising the entanglement between the degrees of freedom in diff erent regions of space. Close to a quantum phase transition it has universal features which serve as a diagnostic of such phenomena. In the second part I consider the unitary time evolution of such systems following a `quantum quench in which a parameter in the hamiltonian is suddenly changed, and argue that finite regions should effectively thermalise at late times, after interesting transient effects.
82 - F. Ginelli , V. Ahlers , R. Livi 2003
A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes fr om a directed-percolation to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions, Mean-field arguments and the mapping on a yet simpler model provide some further insight on the overall scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا