ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Phase Transitions in the Golden String-Net Model

204   0   0.0 ( 0 )
 نشر من قبل Julien Vidal
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions around three exactly solvable points and exact diagonalizations, we find that the non-Abelian doubled Fibonacci topological phase is separated from two nontopological phases by different second-order quantum critical points, the positions of which are computed accurately. These trivial phases are separated by a first-order transition occurring at a fourth exactly solvable point where the ground-state manifold is infinitely many degenerate. The evaluation of critical exponents suggests unusual universality classes.



قيم البحث

اقرأ أيضاً

We consider the three-dimensional Ising model slightly below its critical temperature, with boundary conditions leading to the presence of an interface. We show how the interfacial properties can be deduced starting from the particle modes of the und erlying field theory. The product of the surface tension and the correlation length yields the particle density along the string whose propagation spans the interface. We also determine the order parameter and energy density profiles across the interface, and show that they are in complete agreement with Monte Carlo simulations that we perform.
217 - M. D. Schulz , S. Dusuel , R. Orus 2011
We study the robustness of a generalized Kitaevs toric code with Z_N degrees of freedom in the presence of local perturbations. For N=2, this model reduces to the conventional toric code in a uniform magnetic field. A quantitative analysis is perform ed for the perturbed Z_3 toric code by applying a combination of high-order series expansions and variational techniques. We provide strong evidences for first- and second-order phase transitions between topologically-ordered and polarized phases. Most interestingly, our results also indicate the existence of topological multi-critical points in the phase diagram.
We study a string-net ladder in the presence of a string tension. Focusing on the simplest non-Abelian anyon theory with a quantum dimension larger than two, we determine the phase diagram and find a Russian doll spectrum featuring size-independent e nergy levels as well as highly degenerate zero-energy eigenstates. At the self-dual points, we compute the gap exactly by using a mapping onto the Temperley-Lieb chain. These results are in stark constrast with the ones obtained for Fibonacci or Ising theories.
We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetr ic (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class.
The many-body physics at quantum phase transitions shows a subtle interplay between quantum and thermal fluctuations, emerging in the low-temperature limit. In this review, we first give a pedagogical introduction to the equilibrium behavior of syste ms in that context, whose scaling framework is essentially developed by exploiting the quantum-to-classical mapping and the renormalization-group theory of critical phenomena at continuous phase transitions. Then we specialize to protocols entailing the out-of-equilibrium quantum dynamics, such as instantaneous quenches and slow passages across quantum transitions. These are mostly discussed within dynamic scaling frameworks, obtained by appropriately extending the equilibrium scaling laws. We review phenomena at first-order quantum transitions as well, whose peculiar scaling behaviors are characterized by an extreme sensitivity to the boundary conditions, giving rise to exponentials or power laws for the same bulk system. In the last part, we cover aspects related to the effects of dissipative interactions with an environment, through suitable generalizations of the dynamic scaling at quantum transitions. The presentation is limited to issues related to, and controlled by, the quantum transition developed by closed many-body systems, treating the dissipation as a perturbation of the critical regimes, as for the temperature at the zero-temperature quantum transition. We focus on the physical conditions giving rise to a nontrivial interplay between critical modes and various dissipative mechanisms, generally realized when the involved mechanism excites only the low-energy modes of the quantum transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا