ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of Text Generation: A Survey

145   0   0.0 ( 0 )
 نشر من قبل Asli Celikyilmaz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper surveys evaluation methods of natural language generation (NLG) systems that have been developed in the last few years. We group NLG evaluation methods into three categories: (1) human-centric evaluation metrics, (2) automatic metrics that require no training, and (3) machine-learned metrics. For each category, we discuss the progress that has been made and the challenges still being faced, with a focus on the evaluation of recently proposed NLG tasks and neural NLG models. We then present two examples for task-specific NLG evaluations for automatic text summarization and long text generation, and conclude the paper by proposing future research directions.



قيم البحث

اقرأ أيضاً

209 - Jing Gu , Qingyang Wu , Zhou Yu 2020
Automatic evaluation for open-ended natural language generation tasks remains a challenge. Existing metrics such as BLEU show a low correlation with human judgment. We propose a novel and powerful learning-based evaluation metric: Perception Score. T he method measures the overall quality of the generation and scores holistically instead of only focusing on one evaluation criteria, such as word overlapping. Moreover, it also shows the amount of uncertainty about its evaluation result. By connecting the uncertainty, Perception Score gives a more accurate evaluation for the generation system. Perception Score provides state-of-the-art results on two conditional generation tasks and two unconditional generation tasks.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been pr oposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Recent advances in automatic evaluation metrics for text have shown that deep contextualized word representations, such as those generated by BERT encoders, are helpful for designing metrics that correlate well with human judgements. At the same time , it has been argued that contextualized word representations exhibit sub-optimal statistical properties for encoding the true similarity between words or sentences. In this paper, we present two techniques for improving encoding representations for similarity metrics: a batch-mean centering strategy that improves statistical properties; and a computationally efficient tempered Word Mover Distance, for better fusion of the information in the contextualized word representations. We conduct numerical experiments that demonstrate the robustness of our techniques, reporting results over various BERT-backbone learned metrics and achieving state of the art correlation with human ratings on several benchmarks.
In text generation evaluation, many practical issues, such as inconsistent experimental settings and metric implementations, are often ignored but lead to unfair evaluation and untenable conclusions. We present CoTK, an open-source toolkit aiming to support fast development and fair evaluation of text generation. In model development, CoTK helps handle the cumbersome issues, such as data processing, metric implementation, and reproduction. It standardizes the development steps and reduces human errors which may lead to inconsistent experimental settings. In model evaluation, CoTK provides implementation for many commonly used metrics and benchmark models across different experimental settings. As a unique feature, CoTK can signify when and which metric cannot be fairly compared. We demonstrate that it is convenient to use CoTK for model development and evaluation, particularly across different experimental settings.
Text generation has become one of the most important yet challenging tasks in natural language processing (NLP). The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained langua ge models (PLMs). In this paper, we present an overview of the major advances achieved in the topic of PLMs for text generation. As the preliminaries, we present the general task definition and briefly describe the mainstream architectures of PLMs for text generation. As the core content, we discuss how to adapt existing PLMs to model different input data and satisfy special properties in the generated text. We further summarize several important fine-tuning strategies for text generation. Finally, we present several future directions and conclude this paper. Our survey aims to provide text generation researchers a synthesis and pointer to related research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا