ﻻ يوجد ملخص باللغة العربية
We consider the Steklov zeta function $zeta$ $Omega$ of a smooth bounded simply connected planar domain $Omega$ $subset$ R 2 of perimeter 2$pi$. We provide a first variation formula for $zeta$ $Omega$ under a smooth deformation of the domain. On the base of the formula, we prove that, for every s $in$ (--1, 0) $cup$ (0, 1), the difference $zeta$ $Omega$ (s) -- 2$zeta$ R (s) is non-negative and is equal to zero if and only if $Omega$ is a round disk ($zeta$ R is the classical Riemann zeta function). Our approach gives also an alternative proof of the inequality $zeta$ $Omega$ (s) -- 2$zeta$ R (s) $ge$ 0 for s $in$ (--$infty$, --1] $cup$ (1, $infty$); the latter fact was proved in our previous paper [2018] in a different way. We also provide an alternative proof of the equality $zeta$ $Omega$ (0) = 2$zeta$ R (0) obtained by Edward and Wu [1991].
We consider the zeta function $zeta_Omega$ for the Dirichlet-to-Neumann operator of a simply connected planar domain $Omega$ bounded by a smooth closed curve of perimeter $2pi$. We prove that $zeta_Omega(0)ge zeta_{mathbb{D}}(0)$ with equality if and
In this paper, we prove a new integral representation for the Bessel function of the first kind $J_mu(z)$, which holds for any $mu,zinmathbb{C}$.
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We sho
Formulas relating Poincare-Steklov operators for Schroedinger equations related by Darboux-Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
For an arbitrary open, nonempty, bounded set $Omega subset mathbb{R}^n$, $n in mathbb{N}$, and sufficiently smooth coefficients $a,b,q$, we consider the closed, strictly positive, higher-order differential operator $A_{Omega, 2m} (a,b,q)$ in $L^2(Ome