ترغب بنشر مسار تعليمي؟ اضغط هنا

Integral formula for the Bessel function of the first kind

145   0   0.0 ( 0 )
 نشر من قبل Enrico De Micheli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Enrico De Micheli




اسأل ChatGPT حول البحث

In this paper, we prove a new integral representation for the Bessel function of the first kind $J_mu(z)$, which holds for any $mu,zinmathbb{C}$.



قيم البحث

اقرأ أيضاً

121 - Enrico De Micheli 2017
A Fourier-type integral representation for Bessels function of the first kind and complex order is obtained by using the Gegenbuaer extension of Poissons integral representation for the Bessel function along with a trigonometric integral representati on of Gegenbauers polynomials. This representation lets us express various functions related to the incomplete gamma function in series of Bessels functions. Neumann series of Bessel functions are also considered and a new closed-form integral representation for this class of series is given. The density function of this representation is simply the analytic function on the unit circle associated with the sequence of coefficients of the Neumann series. Examples of new closed-form integral representations of special functions are also presented.
177 - Yilin Chen 2021
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.
142 - Alberto Torchinsky 2019
This note concerns the general formulation by Preiss and Uher of Kestelmans influential result pertaining the change of variable, or substitution, formula for the Riemann integral.
We consider the Steklov zeta function $zeta$ $Omega$ of a smooth bounded simply connected planar domain $Omega$ $subset$ R 2 of perimeter 2$pi$. We provide a first variation formula for $zeta$ $Omega$ under a smooth deformation of the domain. On the base of the formula, we prove that, for every s $in$ (--1, 0) $cup$ (0, 1), the difference $zeta$ $Omega$ (s) -- 2$zeta$ R (s) is non-negative and is equal to zero if and only if $Omega$ is a round disk ($zeta$ R is the classical Riemann zeta function). Our approach gives also an alternative proof of the inequality $zeta$ $Omega$ (s) -- 2$zeta$ R (s) $ge$ 0 for s $in$ (--$infty$, --1] $cup$ (1, $infty$); the latter fact was proved in our previous paper [2018] in a different way. We also provide an alternative proof of the equality $zeta$ $Omega$ (0) = 2$zeta$ R (0) obtained by Edward and Wu [1991].
A new recurrence relation for exceptional orthogonal polynomials is proposed, which holds for type 1, 2 and 3. As concrete examples, the recurrence relations are given for Xj-Hermite, Laguerre and Jacobi polynomials in j = 1,2 case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا