ﻻ يوجد ملخص باللغة العربية
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We show how the nonlinear system may appear from different physical models. We focus our attention on the large time behavior of the solution. We show the existence of a nonlinear scattering operator, which is reminiscent of long range scattering for the nonlinear Schrodinger equation, and which can be compared with its linear counterpart.
Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the stea
We consider the Landau Hamiltonian perturbed by a long-range electric potential $V$. The spectrum of the perturbed operator consists of eigenvalue clusters which accumulate to the Landau levels. First, we obtain an estimate of the rate of the shrinki
In his PhD thesis, Einstein derived an explicit first-order expansion for the effective viscosity of a Stokes fluid with a random suspension of small rigid particles at low density. This formal derivation is based on two assumptions: (i) there is a s
We study the Ginzburg-Landau model of type-I superconductors in the regime of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux patterns are described by a simplified branched transportation functional. We derive
Effects of a periodic driving field on Landau-Zener processes are studied using a nonlinear two-mode model that describes the mean-field dynamics of a many-body system. A variety of different dynamical phenomena in different parameter regimes of the