ﻻ يوجد ملخص باللغة العربية
We consider the zeta function $zeta_Omega$ for the Dirichlet-to-Neumann operator of a simply connected planar domain $Omega$ bounded by a smooth closed curve of perimeter $2pi$. We prove that $zeta_Omega(0)ge zeta_{mathbb{D}}(0)$ with equality if and only if $Omega$ is a disk where $mathbb{D}$ denotes the closed unit disk. We also provide an elementary proof that for a fixed real $s$ satisfying $sle-1$ the estimate $zeta_Omega(s)ge zeta_{mathbb{D}}(s)$ holds with equality if and only if $Omega$ is a disk. We then bring examples of domains $Omega$ close to the unit disk where this estimate fails to be extended to the interval $(0,2)$. Other computations related to previous works are also detailed in the remaining part of the text.
We consider the Steklov zeta function $zeta$ $Omega$ of a smooth bounded simply connected planar domain $Omega$ $subset$ R 2 of perimeter 2$pi$. We provide a first variation formula for $zeta$ $Omega$ under a smooth deformation of the domain. On the
We consider the one dimensional focusing (cubic) Nonlinear Schrodinger equation (NLS) in the semiclassical limit with exponentially decaying complex-valued initial data, whose phase is multiplied by a real parameter. We prove smooth dependence of the
Formulas relating Poincare-Steklov operators for Schroedinger equations related by Darboux-Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
In this Ph.D. dissertation (2018, Emory University) we prove theorems at the intersection of the additive and multiplicative branches of number theory, bringing together ideas from partition theory, $q$-series, algebra, modular forms and analytic num
It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solutio