ﻻ يوجد ملخص باللغة العربية
Network-based interventions against epidemic spread are most powerful when the full network structure is known. However, in practice, resource constraints require decisions to be made based on partial network information. We investigated how the accuracy of network data available at individual and village levels affected network-based vaccination effectiveness. We simulated a Susceptible-Infected-Recovered process on empirical social networks from 75 villages. First, we used regression to predict the percentage of individuals ever infected based on village-level network. Second, we simulated vaccinating 10 percent of each of the 75 empirical village networks at baseline, selecting vaccinees through one of five network-based approaches: random individuals; random contacts of random individuals; random high-degree individuals; highest degree individuals; or most central individuals. The first three approaches require only sample data; the latter two require full network data. We also simulated imposing a limit on how many contacts an individual can nominate (Fixed Choice Design, FCD), which reduces the data collection burden but generates only partially observed networks. We found mean and standard deviation of the degree distribution to strongly predict cumulative incidence. In simulations, the Nomination method reduced cumulative incidence by one-sixth compared to Random vaccination; full network methods reduced infection by two-thirds. The High Degree approach had intermediate effectiveness. Surprisingly, FCD truncating individuals degrees at three was as effective as using complete networks. Using even partial network information to prioritize vaccines at either the village or individual level substantially improved epidemic outcomes. Such approaches may be feasible and effective in outbreak settings, and full ascertainment of network structure may not be required.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju
Understanding the epidemic dynamics, and finding out efficient techniques to control it, is a challenging issue. A lot of research has been done on targeted immunization strategies, exploiting various global network topological properties. However, i
The resurgence of measles is largely attributed to the decline in vaccine adoption and the increase in mobility. Although the vaccine for measles is readily available and highly successful, its current adoption is not adequate to prevent epidemics. V
Until a vaccine or therapy is found against the SARS-CoV-2 coronavirus, reaching herd immunity appears to be the only mid-term option. However, if the number of infected individuals decreases and eventually fades only beyond this threshold, a signifi
Epidemic spread on networks is one of the most studied dynamics in network science and has important implications in real epidemic scenarios. Nonetheless, the dynamics of real epidemics and how it is affected by the underline structure of the infecti