ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating Spread of Contact-Based Contagions in a Population Through Sub-Sampling

69   0   0.0 ( 0 )
 نشر من قبل Sepanta Zeighami
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Physical contacts result in the spread of various phenomena such as viruses, gossips, ideas, packages and marketing pamphlets across a population. The spread depends on how people move and co-locate with each other, or their mobility patterns. How far such phenomena spread has significance for both policy making and personal decision making, e.g., studying the spread of COVID-19 under different intervention strategies such as wearing a mask. In practice, mobility patterns of an entire population is never available, and we usually have access to location data of a subset of individuals. In this paper, we formalize and study the problem of estimating the spread of a phenomena in a population, given that we only have access to sub-samples of location visits of some individuals in the population. We show that simple solutions such as estimating the spread in the sub-sample and scaling it to the population, or more sophisticated solutions that rely on modeling location visits of individuals do not perform well in practice, the former because it ignores contacts between unobserved individuals and sampled ones and the latter because it yields inaccurate modeling of co-locations. Instead, we directly model the co-locations between the individuals. We introduce PollSpreader and PollSusceptible, two novel approaches that model the co-locations between individuals using a contact network, and infer the properties of the contact network using the subsample to estimate the spread of the phenomena in the entire population. We show that our estimates provide an upper bound and a lower bound on the spread of the disease in expectation. Finally, using a large high-resolution real-world mobility dataset, we experimentally show that our estimates are accurate, while other methods that do not correctly account for co-locations between individuals result in wrong observations (e.g, premature herd-immunity).



قيم البحث

اقرأ أيضاً

Given a large population, it is an intensive task to gather individual preferences over a set of alternatives and arrive at an aggregate or collective preference of the population. We show that social network underlying the population can be harnesse d to accomplish this task effectively, by sampling preferences of a small subset of representative nodes. We first develop a Facebook app to create a dataset consisting of preferences of nodes and the underlying social network, using which, we develop models that capture how preferences are distributed among nodes in a typical social network. We hence propose an appropriate objective function for the problem of selecting best representative nodes. We devise two algorithms, namely, Greedy-min which provides a performance guarantee for a wide class of popular voting rules, and Greedy-sum which exhibits excellent performance in practice. We compare the performance of these proposed algorithms against random-polling and popular centrality measures, and provide a detailed analysis of the obtained results. Our analysis suggests that selecting representatives using social network information is advantageous for aggregating preferences related to personal topics (e.g., lifestyle), while random polling with a reasonable sample size is good enough for aggregating preferences related to social topics (e.g., government policies).
We consider here information spread which propagates with certain probability from nodes just activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we propose a coordinated execution of randomized choices to enable precise comparison of different algorithms in general. We apply it here when the newly activated nodes at each stage of spreading attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers at least as large coverage as the single stage seeding does. Moreover, we also show that, under modest assumptions, sequential seeding achieves coverage provably better than the single stage based approach using the same number of seeds and node ranking. Finally, we present experimental results showing how single stage and sequential approaches on directed and undirected graphs compare to the well-known greedy approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the computationally expensive greedy approach currently considered to be the best heuristic.
The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. Th e results from our global survey finds a troubling reach of and belief in COVID-related misinformation, as well as a correlation with those that primarily consume news from social media, and, in the United States, a strong correlation with political leaning.
Coronavirus outbreak is one of the most challenging pandemics for the entire human population of the planet Earth. Techniques such as the isolation of infected persons and maintaining social distancing are the only preventive measures against the epi demic COVID-19. The actual estimation of the number of infected persons with limited data is an indeterminate problem faced by data scientists. There are a large number of techniques in the existing literature, including reproduction number, the case fatality rate, etc., for predicting the duration of an epidemic and infectious population. This paper presents a case study of different techniques for analysing, modeling, and representation of data associated with an epidemic such as COVID-19. We further propose an algorithm for estimating infection transmission states in a particular area. This work also presents an algorithm for estimating end-time of an epidemic from Susceptible Infectious and Recovered model. Finally, this paper presents empirical and data analysis to study the impact of transmission probability, rate of contact, infectious, and susceptible on the epidemic spread.
Network structure can affect when and how widely new ideas, products, and behaviors are adopted. In widely-used models of biological contagion, interventions that randomly rewire edges (generally making them longer) accelerate spread. However, there are other models relevant to social contagion, such as those motivated by myopic best-response in games with strategic complements, in which an individuals behavior is described by a threshold number of adopting neighbors above which adoption occurs (i.e., complex contagions). Recent work has argued that highly clustered, rather than random, networks facilitate spread of these complex contagions. Here we show that minor modifications to this model, which make it more realistic, reverse this result: we allow very rare below-threshold adoption, i.e., rarely adoption occurs when there is only one adopting neighbor. To model the trade-off between long and short edges we consider networks that are the union of cycle-power-$k$ graphs and random graphs on $n$ nodes. Allowing adoptions below threshold to occur with order $1/sqrt{n}$ probability along some short cycle edges is enough to ensure that random rewiring accelerates spread. Simulations illustrate the robustness of these results to other commonly-posited models for noisy best-response behavior. Hypothetical interventions that randomly rewire existing edges or add random edges (versus adding short, triad-closing edges) in hundreds of empirical social networks reduce time to spread. This revised conclusion suggests that those wanting to increase spread should induce formation of long ties, rather than triad-closing ties. More generally, this highlights the importance of noise in game-theoretic analyses of behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا