ترغب بنشر مسار تعليمي؟ اضغط هنا

Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples

171   0   0.0 ( 0 )
 نشر من قبل Javier Del Ser Dr.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The last decade has witnessed the proliferation of Deep Learning models in many applications, achieving unrivaled levels of predictive performance. Unfortunately, the black-box nature of Deep Learning models has posed unanswered questions about what they learn from data. Certain application scenarios have highlighted the importance of assessing the bounds under which Deep Learning models operate, a problem addressed by using assorted approaches aimed at audiences from different domains. However, as the focus of the application is placed more on non-expert users, it results mandatory to provide the means for him/her to trust the model, just like a human gets familiar with a system or process: by understanding the hypothetical circumstances under which it fails. This is indeed the angular stone for this research work: to undertake an adversarial analysis of a Deep Learning model. The proposed framework constructs counterfactual examples by ensuring their plausibility, e.g. there is a reasonable probability that a human could generate them without resorting to a computer program. Therefore, this work must be regarded as valuable auditing exercise of the usable bounds a certain model is constrained within, thereby allowing for a much greater understanding of the capabilities and pitfalls of a model used in a real application. To this end, a Generative Adversarial Network (GAN) and multi-objective heuristics are used to furnish a plausible attack to the audited model, efficiently trading between the confusion of this model, the intensity and plausibility of the generated counterfactual. Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.

قيم البحث

اقرأ أيضاً

Deep neural networks have demonstrated cutting edge performance on various tasks including classification. However, it is well known that adversarially designed imperceptible perturbation of the input can mislead advanced classifiers. In this paper, Permutation Phase Defense (PPD), is proposed as a novel method to resist adversarial attacks. PPD combines random permutation of the image with phase component of its Fourier transform. The basic idea behind this approach is to turn adversarial defense problems analogously into symmetric cryptography, which relies solely on safekeeping of the keys for security. In PPD, safe keeping of the selected permutation ensures effectiveness against adversarial attacks. Testing PPD on MNIST and CIFAR-10 datasets yielded state-of-the-art robustness against the most powerful adversarial attacks currently available.
Deep neural networks (DNNs) are vulnerable to adversarial examples with small perturbations. Adversarial defense thus has been an important means which improves the robustness of DNNs by defending against adversarial examples. Existing defense method s focus on some specific types of adversarial examples and may fail to defend well in real-world applications. In practice, we may face many types of attacks where the exact type of adversarial examples in real-world applications can be even unknown. In this paper, motivated by that adversarial examples are more likely to appear near the classification boundary, we study adversarial examples from a new perspective that whether we can defend against adversarial examples by pulling them back to the original clean distribution. We theoretically and empirically verify the existence of defense affine transformations that restore adversarial examples. Relying on this, we learn a defense transformer to counterattack the adversarial examples by parameterizing the affine transformations and exploiting the boundary information of DNNs. Extensive experiments on both toy and real-world datasets demonstrate the effectiveness and generalization of our defense transformer.
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defenses for graph data. In this paper, we propose both attack and defense techniques. For attack, we show that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defense, we observe that the adversarially manipulated graph for the targeted attack differs from normal graphs statistically. Based on this observation, we propose a defense approach which inspects the graph and recovers the potential adversarial perturbations. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and for thoroughly testing defense techniques. In this paper, we propose a black-box adversarial attack algorithm that can defeat both vanilla DNNs and those generated by various defense techniques developed recently. Instead of searching for an optimal adversarial example for a benign input to a targeted DNN, our algorithm finds a probability density distribution over a small region centered around the input, such that a sample drawn from this distribution is likely an adversarial example, without the need of accessing the DNNs internal layers or weights. Our approach is universal as it can successfully attack different neural networks by a single algorithm. It is also strong; according to the testing against 2 vanilla DNNs and 13 defended ones, it outperforms state-of-the-art black-box or white-box attack methods for most test cases. Additionally, our results reveal that adversarial training remains one of the best defense techniques, and the adversarial examples are not as transferable across defended DNNs as them across vanilla DNNs.
We present a mechanism for detecting adversarial examples based on data representations taken from the hidden layers of the target network. For this purpose, we train individual autoencoders at intermediate layers of the target network. This allows u s to describe the manifold of true data and, in consequence, decide whether a given example has the same characteristics as true data. It also gives us insight into the behavior of adversarial examples and their flow through the layers of a deep neural network. Experimental results show that our method outperforms the state of the art in supervised and unsupervised settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا