ﻻ يوجد ملخص باللغة العربية
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defenses for graph data. In this paper, we propose both attack and defense techniques. For attack, we show that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defense, we observe that the adversarially manipulated graph for the targeted attack differs from normal graphs statistically. Based on this observation, we propose a defense approach which inspects the graph and recovers the potential adversarial perturbations. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Deep neural networks have demonstrated cutting edge performance on various tasks including classification. However, it is well known that adversarially designed imperceptible perturbation of the input can mislead advanced classifiers. In this paper,
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The researc
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding imperceptible perturbations to inputs. Recently different attacks and strategies have been proposed, but how to generate adversarial examples perceptually
Deep neural networks (DNNs) are vulnerable to adversarial examples with small perturbations. Adversarial defense thus has been an important means which improves the robustness of DNNs by defending against adversarial examples. Existing defense method