ﻻ يوجد ملخص باللغة العربية
Many autonomous systems forecast aspects of the future in order to aid decision-making. For example, self-driving vehicles and robotic manipulation systems often forecast future object poses by first detecting and tracking objects. However, this detect-then-forecast pipeline is expensive to scale, as pose forecasting algorithms typically require labeled sequences of object poses, which are costly to obtain in 3D space. Can we scale performance without requiring additional labels? We hypothesize yes, and propose inverting the detect-then-forecast pipeline. Instead of detecting, tracking and then forecasting the objects, we propose to first forecast 3D sensor data (e.g., point clouds with $100$k points) and then detect/track objects on the predicted point cloud sequences to obtain future poses, i.e., a forecast-then-detect pipeline. This inversion makes it less expensive to scale pose forecasting, as the sensor data forecasting task requires no labels. Part of this works focus is on the challenging first step -- Sequential Pointcloud Forecasting (SPF), for which we also propose an effective approach, SPFNet. To compare our forecast-then-detect pipeline relative to the detect-then-forecast pipeline, we propose an evaluation procedure and two metrics. Through experiments on a robotic manipulation dataset and two driving datasets, we show that SPFNet is effective for the SPF task, our forecast-then-detect pipeline outperforms the detect-then-forecast approaches to which we compared, and that pose forecasting performance improves with the addition of unlabeled data.
Production forecasting is a key step to design the future development of a reservoir. A classical way to generate such forecasts consists in simulating future production for numerical models representative of the reservoir. However, identifying such
Smooth and seamless robot navigation while interacting with humans depends on predicting human movements. Forecasting such human dynamics often involves modeling human trajectories (global motion) or detailed body joint movements (local motion). Prio
Joint forecasting of human trajectory and pose dynamics is a fundamental building block of various applications ranging from robotics and autonomous driving to surveillance systems. Predicting body dynamics requires capturing subtle information embed
Recurrent neural networks are widely used on time series data, yet such models often ignore the underlying physical structures in such sequences. A new class of physics-based methods related to Koopman theory has been introduced, offering an alternat
We propose a sequential optimizing betting strategy in the multi-dimensional bounded forecasting game in the framework of game-theoretic probability of Shafer and Vovk (2001). By studying the asymptotic behavior of its capital process, we prove a gen