ترغب بنشر مسار تعليمي؟ اضغط هنا

Socially and Contextually Aware Human Motion and Pose Forecasting

147   0   0.0 ( 0 )
 نشر من قبل Vida Adeli
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Smooth and seamless robot navigation while interacting with humans depends on predicting human movements. Forecasting such human dynamics often involves modeling human trajectories (global motion) or detailed body joint movements (local motion). Prior work typically tackled local and global human movements separately. In this paper, we propose a novel framework to tackle both tasks of human motion (or trajectory) and body skeleton pose forecasting in a unified end-to-end pipeline. To deal with this real-world problem, we consider incorporating both scene and social contexts, as critical clues for this prediction task, into our proposed framework. To this end, we first couple these two tasks by i) encoding their history using a shared Gated Recurrent Unit (GRU) encoder and ii) applying a metric as loss, which measures the source of errors in each task jointly as a single distance. Then, we incorporate the scene context by encoding a spatio-temporal representation of the video data. We also include social clues by generating a joint feature representation from motion and pose of all individuals from the scene using a social pooling layer. Finally, we use a GRU based decoder to forecast both motion and skeleton pose. We demonstrate that our proposed framework achieves a superior performance compared to several baselines on two social datasets.

قيم البحث

اقرأ أيضاً

Joint forecasting of human trajectory and pose dynamics is a fundamental building block of various applications ranging from robotics and autonomous driving to surveillance systems. Predicting body dynamics requires capturing subtle information embed ded in the humans interactions with each other and with the objects present in the scene. In this paper, we propose a novel TRajectory and POse Dynamics (nicknamed TRiPOD) method based on graph attentional networks to model the human-human and human-object interactions both in the input space and the output space (decoded future output). The model is supplemented by a message passing interface over the graphs to fuse these different levels of interactions efficiently. Furthermore, to incorporate a real-world challenge, we propound to learn an indicator representing whether an estimated body joint is visible/invisible at each frame, e.g. due to occlusion or being outside the sensor field of view. Finally, we introduce a new benchmark for this joint task based on two challenging datasets (PoseTrack and 3DPW) and propose evaluation metrics to measure the effectiveness of predictions in the global space, even when there are invisible cases of joints. Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
This paper proposes a human-aware deblurring model that disentangles the motion blur between foreground (FG) humans and background (BG). The proposed model is based on a triple-branch encoder-decoder architecture. The first two branches are learned f or sharpening FG humans and BG details, respectively; while the third one produces global, harmonious results by comprehensively fusing multi-scale deblurring information from the two domains. The proposed model is further endowed with a supervised, human-aware attention mechanism in an end-to-end fashion. It learns a soft mask that encodes FG human information and explicitly drives the FG/BG decoder-branches to focus on their specific domains. To further benefit the research towards Human-aware Image Deblurring, we introduce a large-scale dataset, named HIDE, which consists of 8,422 blurry and sharp image pairs with 65,784 densely annotated FG human bounding boxes. HIDE is specifically built to span a broad range of scenes, human object sizes, motion patterns, and background complexities. Extensive experiments on public benchmarks and our dataset demonstrate that our model performs favorably against the state-of-the-art motion deblurring methods, especially in capturing semantic details.
Our field has recently witnessed an arms race of neural network-based trajectory predictors. While these predictors are at the core of many applications such as autonomous navigation or pedestrian flow simulations, their adversarial robustness has no t been carefully studied. In this paper, we introduce a socially-attended attack to assess the social understanding of prediction models in terms of collision avoidance. An attack is a small yet carefully-crafted perturbations to fail predictors. Technically, we define collision as a failure mode of the output, and propose hard- and soft-attention mechanisms to guide our attack. Thanks to our attack, we shed light on the limitations of the current models in terms of their social understanding. We demonstrate the strengths of our method on the recent trajectory prediction models. Finally, we show that our attack can be employed to increase the social understanding of state-of-the-art models. The code is available online: https://s-attack.github.io/
In this work, we propose a new solution to 3D human pose estimation in videos. Instead of directly regressing the 3D joint locations, we draw inspiration from the human skeleton anatomy and decompose the task into bone direction prediction and bone l ength prediction, from which the 3D joint locations can be completely derived. Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time. This promotes us to develop effective techniques to utilize global information across all the frames in a video for high-accuracy bone length prediction. Moreover, for the bone direction prediction network, we propose a fully-convolutional propagating architecture with long skip connections. Essentially, it predicts the directions of different bones hierarchically without using any time-consuming memory units e.g. LSTM). A novel joint shift loss is further introduced to bridge the training of the bone length and bone direction prediction networks. Finally, we employ an implicit attention mechanism to feed the 2D keypoint visibility scores into the model as extra guidance, which significantly mitigates the depth ambiguity in many challenging poses. Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets, where comprehensive evaluation validates the effectiveness of our model.
We develop a robust multi-scale structure-aware neural network for human pose estimation. This method improves the recent deep conv-deconv hourglass models with four key improvements: (1) multi-scale supervision to strengthen contextual feature learn ing in matching body keypoints by combining feature heatmaps across scales, (2) multi-scale regression network at the end to globally optimize the structural matching of the multi-scale features, (3) structure-aware loss used in the intermediate supervision and at the regression to improve the matching of keypoints and respective neighbors to infer a higher-order matching configurations, and (4) a keypoint masking training scheme that can effectively fine-tune our network to robustly localize occluded keypoints via adjacent matches. Our method can effectively improve state-of-the-art pose estimation methods that suffer from difficulties in scale varieties, occlusions, and complex multi-person scenarios. This multi-scale supervision tightly integrates with the regression network to effectively (i) localize keypoints using the ensemble of multi-scale features, and (ii) infer global pose configuration by maximizing structural consistencies across multiple keypoints and scales. The keypoint masking training enhances these advantages to focus learning on hard occlusion samples. Our method achieves the leading position in the MPII challenge leaderboard among the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا