ﻻ يوجد ملخص باللغة العربية
The superior performance of ensemble methods with infinite models are well known. Most of these methods are based on optimization problems in infinite-dimensional spaces with some regularization, for instance, boosting methods and convex neural networks use $L^1$-regularization with the non-negative constraint. However, due to the difficulty of handling $L^1$-regularization, these problems require early stopping or a rough approximation to solve it inexactly. In this paper, we propose a new ensemble learning method that performs in a space of probability measures, that is, our method can handle the $L^1$-constraint and the non-negative constraint in a rigorous way. Such an optimization is realized by proposing a general purpose stochastic optimization method for learning probability measures via parameterization using transport maps on base models. As a result of running the method, a transport map to output an infinite ensemble is obtained, which forms a residual-type network. From the perspective of functional gradient methods, we give a convergence rate as fast as that of a stochastic optimization method for finite dimensional nonconvex problems. Moreover, we show an interior optimality property of a local optimality condition used in our analysis.
We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected clas
There has been a recent surge of interest in understanding the convergence of gradient descent (GD) and stochastic gradient descent (SGD) in overparameterized neural networks. Most previous works assume that the training data is provided a priori in
We propose an optimization method for minimizing the finite sums of smooth convex functions. Our method incorporates an accelerated gradient descent (AGD) and a stochastic variance reduction gradient (SVRG) in a mini-batch setting. Unlike SVRG, our m
This work provides a simplified proof of the statistical minimax optimality of (iterate averaged) stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by analyzing SGD as a stochastic process and by sharpl
Stochastic gradient descent (SGD) is an immensely popular approach for online learning in settings where data arrives in a stream or data sizes are very large. However, despite an ever- increasing volume of work on SGD, much less is known about the s