ﻻ يوجد ملخص باللغة العربية
The production of a highly-polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarizations effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the post-selection procedure to generate high-quality positrons in further applications. In a feasible scenario, a highly polarized ($40%-65%$), intense ($10^5$/bunch$-10^6 $/bunch), collimated ($5$mrad$-70$ mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science .
Generation of ultrarelativistic polarized positrons during interaction of an ultrarelativistic electron beam with a counterpropagating two-color petawatt laser pulse is investigated theoretically. Our Monte Carlo simulation based on a semi-classical
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi
Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments.
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the pol
High-flux polarized particle beams are of critical importance for the investigation of spin-dependent processes, such as in searches of physics beyond the Standard Model, as well as for scrutinizing the structure of solids and surfaces in material sc