ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized laser-wakefield-accelerated kiloampere electron beams

92   0   0.0 ( 0 )
 نشر من قبل Matteo Tamburini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-flux polarized particle beams are of critical importance for the investigation of spin-dependent processes, such as in searches of physics beyond the Standard Model, as well as for scrutinizing the structure of solids and surfaces in material science. Here we demonstrate that kiloampere polarized electron beams can be produced via laser-wakefield acceleration from a gas target. A simple theoretical model for determining the electron beam polarization is presented and supported with self-consistent three-dimensional particle-in-cell simulations that incorporate the spin dynamics. By appropriately choosing the laser and gas parameters, we show that the depolarization of electrons induced by the laser-wakefield-acceleration process can be as low as 10%. Compared to currently available sources of polarized electron beams, the flux is increased by four orders of magnitude.


قيم البحث

اقرأ أيضاً

115 - R. J. Garland , K. Poder , J. Cole 2014
Laser-wakefield acceleration is a promising technique for the next generation of ultra-compact, high-energy particle accelerators. However, for a meaningful use of laser-driven particle beams it is necessary that they present a high degree of pointin g stability in order to be injected into transport lines and further acceleration stages. Here we show a comprehensive experimental study of the main factors limiting the pointing stability of laser-wakefield accelerated electron beams. It is shown that gas-cells provide a much more stable electron generation axis, if compared to gas-jet targets, virtually regardless of the gas density used. A sub-mrad shot-to-shot fluctuation in pointing is measured and a consistent non-zero offset of the electron axis in respect to the laser propagation axis is found to be solely related to a residual angular dispersion introduced by the laser compression system and can be used as a precise diagnostic tool for compression oprtimisation in chirped pulse amplified lasers.
124 - S. Gode , C. Rodel , K. Zeil 2017
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a $mu$ m-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of $B>$10 MG and $E>$0.1 MV/$mu$m fields with a $mu$m-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length $gtrsim 0.13 lambda_0 sqrt{a_0}$. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multi-purpose applications.
Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments. We put forward a novel efficient way for generating ultrarelativistic polarized positron beams employing currently available laser fields. For this purpose the generation of polarized positrons via multiphoton Breit-Wheeler pair production and the associated spin dynamics in single-shot interaction of an ultraintense laser pulse with an ultrarelativistic electron beam is investigated in the quantum radiation-dominated regime. A specifically tailored small ellipticity of the laser field is shown to promote splitting of the polarized particles along the minor axis of laser polarization into two oppositely polarized beams. In spite of radiative de-polarization, a dense positron beam with up to about 90% polarization can be generated in tens of femtoseconds. The method may eventually usher high-energy physics studies into smaller-scale laser laboratories.
We investigate the generation of twin $gamma$ ray beams in collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam by using particle-in-cell simulation. We consider the composed target of a homogeneous underde nse preplasma in front of an ultrathin solid foil. The electrons in the preplasma are trapped and accelerated by the wakefield. When the laser pulse is reflected by the thin solid foil, the wakefield accelerated electrons continue to move forward and passing through the foil almost without the influence of the reflected laser pulse and the foil. Consequently, two groups of $gamma$ ray flashes, with tunable time delay and energy, are generated by the wakefield accelerated electron beam interacting with the reflected laser pulse from the foil as well as another counter propagating petawatt laser pulse in the behind the foil. The dependence of the $gamma$ photon emission on the preplasma densities, driving laser polarization and the foil are studied.
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron be am, todays lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We report on the observation of radiation reaction in the collision of an ultra-relativistic electron beam generated by laser wakefield acceleration ($varepsilon > 500$ MeV) with an intense laser pulse ($a_0 > 10$). We measure an energy loss in the post-collision electron spectrum that is correlated with the detected signal of hard photons ($gamma$-rays), consistent with a quantum (stochastic) description of radiation reaction. The generated $gamma$-rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy $varepsilon_{rm crit} > $ 30 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا