ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon polarization effects in polarized electron-positron pair production in a strong laser field

78   0   0.0 ( 0 )
 نشر من قبل Yue-Yue Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investigate, employing fully polarization resolved Monte Carlo simulations, the correlated photon and electron (positron) polarization effects in multiphoton Breit-Wheeler pair production process during the interaction of an ultrarelativistic electron beam with a counterpropagating elliptically polarized laser pulse. We showed that the polarization of e^-e^+ pairs is degraded by 35%, when the polarization of the intermediate photon is resolved, accompanied with an approximately 13% decrease of the pair yield. Moreover, the polarization direction of energetic positrons in small angle region is reversed, which originates from the pair production of hard photons with polarization parallel with electric field.



قيم البحث

اقرأ أيضاً

The pair-production process in the presence of strong linearly polarized laser fields with a subcycle structure is considered. Laser pulses with different envelope shapes are examined by means of a nonperturbative numerical technique. We analyze two different flat envelope shapes and two shapes without a plateau for their various parameters including the carrier-envelope phase. The resonant Rabi oscillations, momentum distribution of particles created, and total number of pairs are studied. It is demonstrated that all these characteristics are very sensitive to the pulse shape.
The production of a highly-polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated t heoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarizations effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the post-selection procedure to generate high-quality positrons in further applications. In a feasible scenario, a highly polarized ($40%-65%$), intense ($10^5$/bunch$-10^6 $/bunch), collimated ($5$mrad$-70$ mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science .
We consider vacuum polarization effects in the one-photon annihilation channel within a kinetic description of the e+ e- plasma produced from the vacuum in the focal spot of counter-propagating laser beams. This entails essential changes in the struc ture of the photon kinetic equation. We investigate the domain of large adiabaticity parameters gamma >> 1 where the photon radiation turns out to be very small. A more thorough examination of the domain gamma < 1 needs separate investigation. However, an exploratory study has shown that the one-photon annihilation channel can lead for some domains of laser field parameters (e.g., for the XFEL) to contributions accessible for observation.
The spin effect of electrons/positrons ($e^-$/$e^+$) and polarization effect of $gamma$ photons are investigated in the interaction of two counter-propagating linearly polarized 10-PW-class laser pulses with a thin foil target. The processes of nonli near Compton scattering and nonlinear Breit-Wheeler pair production based on spin- and polarization-resolved probabilities are implemented into the particle-in-cell (PIC) algorithm by Monte Carlo methods. It is found from PIC simulations that the average degree of linear polarization of emitted $gamma$ photons can exceed $50%$. This polarization effect leads to reduced positron yield by about $10%$. At some medium positron energies, the reduction can reach $20%$. Furthermore, we also observe that the local spin polarization of $e^-$/$e^+$ leads to a slight decrease of the positron yield about $2%$ and some anomalous phenomena about the positron spectrum and photon polarization at the high-energy range, due to spin-dependent photon emissions. Our results indicate that spin and polarization effects should be considered in calculating the pair production and laser-plasma interaction with the laser power of 10-PW class.
Here, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bi-chromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polariza tion over a wide range of parameters and determine the optimum conditions for maximum radiative polarization. Those results are contrasted with a Monte-Carlo algorithm where photon emission and associated spin effects are treated fully quantum mechanically using spin-dependent photon emission rates. The latter method includes realistic focusing laser fields, which allows us to simulate a near-term experimentally feasible scenario of a 8 GeV electron beam scattering from a 1 PW laser pulse and provide a measurement that would verify the ultrafast radiative polarization in high-intensity laser pulses that we predict. Aspects of spin dependent radiation reaction are also discussed, with spin polarization leading to a measurable (5%) splitting of the energies of spin-up and spin-down electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا