ترغب بنشر مسار تعليمي؟ اضغط هنا

Realizing gapped surface states in magnetic topological insulator MnBi$_{2-x}$Sb$_{x}$Te$_{4}$

411   0   0.0 ( 0 )
 نشر من قبل Wonhee Ko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion states. A key to assessing these novel properties is to tune the Fermi level in the exchange gap of the Dirac surface band. MnBi$_2$Te$_4$ possesses non-trivial band topology with intrinsic antiferromagnetic (AFM) state that can enable all of these quantum states, however, highly electron-doped nature of the MnBi$_2$Te$_4$ crystals obstructs the exhibition of the gapped topological surface states. Here, we tailor the material through Sb-substitution to reveal the gapped surface states in MnBi$_{2-x}$Sb$_{x}$Te$_{4}$ (MBST). By shifting the Fermi level into the bulk band gap of MBST, we access the surface states and show a band gap of 50 meV at the Dirac point from quasi-particle interference (QPI) measured by scanning tunneling microscopy/spectroscopy (STM/STS). Surface-dominant conduction is confirmed below the Neel temperature through transport spectroscopy measured by multiprobe STM. The surface band gap is robust against out-of-plane magnetic field despite the promotion of field-induced ferromagnetism. The realization of bulk-insulating MTI with the large exchange gap offers a promising platform for exploring emergent topological phenomena.

قيم البحث

اقرأ أيضاً

The intrinsic antiferromagnetic topological insulator MnBi$_{2}$Te$_{4}$ undergoes a metamagnetic transition in a c-axis magnetic field. It has been predicted that ferromagnetic MnBi$_{2}$Te$_{4}$ is an ideal Weyl semimetal with a single pair of Weyl nodes. Here we report measurements of quantum oscillations detected in the field-induced ferromagnetic phase of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$, where Sb substitution tunes the majority carriers from electrons to holes. Single frequency Shubnikov-de Haas oscillations were observed in a wide range of Sb concentrations (0.54 $leq$ x $leq$ 1.21). The evolution of the oscillation frequency and the effective mass shows reasonable agreement with the Weyl semimetal band-structure of ferromagnetic MnBi$_{2}$Te$_{4}$ predicted by density functional calculations. Intriguingly, the quantum oscillation frequency shows a strong temperature dependence, indicating that the electronic structure sensitively depends on magnetism.
The search for materials to support the Quantum Anomalous Hall Effect (QAHE) have recently centered on intrinsic magnetic topological insulators (MTIs) including MnBi$_2$Te$_4$ or heterostructures made up of MnBi$_2$Te$_4$ and Bi$_2$Te$_3$. While MnB i$_2$Te$_4$ is itself a MTI, most recent ARPES experiments indicate that the surface states on this material lack the mass gap that is expected from the magnetism-induced time-reversal symmetry breaking (TRSB), with the absence of this mass gap likely due to surface magnetic disorder. Here, utilizing small-spot ARPES scanned across the surfaces of MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$, we show the presence of large mass gaps (~ 100 meV scale) on both of these materials when the MnBi$_2$Te$_4$ surfaces are buried below one layer of Bi$_2$Te$_3$ that apparently protects the magnetic order, but not when the MnBi$_2$Te$_4$ surfaces are exposed at the surface or are buried below two Bi$_2$Te$_3$ layers. This makes both MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$ excellent candidates for supporting the QAHE, especially if bulk devices can be fabricated with a single continuous Bi$_2$Te$_3$ layer at the surface.
Crystal growth of MnBi$_{2}$Te$_{4}$ has delivered the first experimental corroboration of the 3D antiferromagnetic topological insulator state. Our present results confirm that the synthesis of MnBi$_{2}$Te$_{4}$ can be scaled-up and strengthen it a s a promising experimental platform for studies of a crossover between magnetic ordering and non-trivial topology. High-quality single crystals of MnBi$_{2}$Te$_{4}$ are grown by slow cooling within a narrow range between the melting points of Bi$_{2}$Te$_{3}$ (586 {deg}C) and MnBi$_{2}$Te$_{4}$ (600 {deg}C). Single crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies. Powders of MnBi$_{2}$Te$_{4}$ can be obtained at subsolidus temperatures, and a complementary thermochemical study establishes a limited high-temperature range of phase stability. Nevertheless, quenched powders are stable at room temperature and exhibit long-range antiferromagnetic ordering below 24 K. The expected Mn(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption and linear dichroism data. MnBi$_{2}$Te$_{4}$ exhibits a metallic type of resistivity in the range 4.5-300 K. The compound is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments provide evidence for a surface state forming a gapped Dirac cone.
A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi$_{2-x}$Sb$_x $Te$_{3-y}$Se$_y$ thin films and experimental observation of the electrical transport. By tuning the chemical potential of n-type topological Dirac surface of BSTS on its top half by employing tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an organic acceptor molecule, a half surface can be converted to p-type with leaving the other half side as the opposite n-type, and consequently TPNJ can be created. By sweeping the back-gate voltage in the field effect transistor structure, the TPNJ was controlled both on the bottom and the top surfaces. A dramatic change in electrical transport observed at the TPNJ on 3D-TI thin films promises novel spin and charge transport of 3D-TIs for future spintronics.
To achieve and utilize the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TI),it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely used approach. But it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr$_{0.08}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.92}$Te$_3$. Simultaneous visualization of the Dirac-mass gap $Delta(r)$ reveals its intense disorder, which we demonstrate directly is related to fluctuations in $n(r)$, the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of $Delta(r)$ consistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship $Delta(r)propto n(r)$ is confirmed throughout, and exhibits an electron-dopant interaction energy $J^*$=145$meVcdot nm^2$. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal-symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا