ترغب بنشر مسار تعليمي؟ اضغط هنا

In-plane Topological p-n Junction in the Three-Dimensional Topological Insulator Bi$_{2-x}$Sb$_x$Te$_{3-y}$Se$_y$

94   0   0.0 ( 0 )
 نشر من قبل Yoichi Tanabe
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi$_{2-x}$Sb$_x$Te$_{3-y}$Se$_y$ thin films and experimental observation of the electrical transport. By tuning the chemical potential of n-type topological Dirac surface of BSTS on its top half by employing tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an organic acceptor molecule, a half surface can be converted to p-type with leaving the other half side as the opposite n-type, and consequently TPNJ can be created. By sweeping the back-gate voltage in the field effect transistor structure, the TPNJ was controlled both on the bottom and the top surfaces. A dramatic change in electrical transport observed at the TPNJ on 3D-TI thin films promises novel spin and charge transport of 3D-TIs for future spintronics.



قيم البحث

اقرأ أيضاً

We report the growth of high quality Bi$_{2-x}$Sb$_x$Te$_{3-y}$Se$_y$ ultrathin nanoplates (BSTS-NPs) on an electrically insulating fluorophlogopite mica substrate using a catalyst-free vapor solid method. Under an optimized pressure and suitable Ar gas flow rate, we control the thickness, the size and the composition of BSTS-NPs. Raman spectra showing systematic change indicate that the thicknesses and compositions of BSTS-NPs are indeed accurately controlled. Electrical transport demonstrates that a robust Dirac cone carrier transport in BSTS-NPs. Since BSTS-NPs provide superior dominant surface transport of the tunable Dirac cone surface states with negligible contribution of the conduction of the bulk states, BSTS-NPs provide an ideal platform to explore intrinsic physical phenomena as well as technological applications of 3-dimensional topological insulators in the future.
206 - T. Mayer , H. Werner , F. Schmid 2020
The challenge of parasitic bulk doping in Bi-based 3D topological insulator materials is still omnipresent, especially when preparing samples by molecular beam epitaxy (MBE). Here, we present a heterostructure approach for epitaxial BSTS growth. A th in n-type Bi$_2$Se$_3$ (BS) layer is used as an epitaxial and electrostatic seed which drastically improves the crystalline and electronic quality and reproducibility of the sample properties. In heterostructures of BS with p-type (Bi$_{1-x}$Sb$_x$)$_2$(Te$_{1-y}$Se$_y$)$_3$ (BSTS) we demonstrate intrinsic band bending effects to tune the electronic properties solely by adjusting the thickness of the respective layer. The analysis of weak anti-localization features in the magnetoconductance indicates a separation of top and bottom conduction layers with increasing BSTS thickness. By temperature- and gate-dependent transport measurements, we show that the thin BS seed layer can be completely depleted within the heterostructure and demonstrate electrostatic tuning of the bands via a back-gate throughout the whole sample thickness.
202 - A. Kogar , S. Vig , A. Thaler 2015
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon p redicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $chi (textbf{q},omega)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
178 - Y. Pan , D. Wu , J.R. Angevaare 2014
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)$_{2}$(Te,Se)$_{3}$ (BSTS) has been proposed as a topological insulator with high resistivity and a low carrie r concentration (Ren textit{et al.} cite{Ren2011}). Here we present a study to further refine the bulk-insulating properties of BSTS. We have synthesized Bi$_{2-x}$Sb${_x}$Te$_{3-y}$Se$_{y}$ single crystals with compositions around $x = 0.5$ and $y = 1.3$. Resistance and Hall effect measurements show high resistivity and record low bulk carrier density for the composition Bi$_{1.46}$Sb$_{0.54}$Te$_{1.7}$Se$_{1.3}$. The analysis of the resistance measured for crystals with different thicknesses within a parallel resistor model shows that the surface contribution to the electrical transport amounts to 97% when the sample thickness is reduced to $1 mu$m. The magnetoconductance of exfoliated BSTS nanoflakes shows 2D weak antilocalization with $alpha simeq -1$ as expected for transport dominated by topological surface states.
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivi ty. Thin films of these alloys have been particularly important for tuning the energy of the Fermi level, a key step in observing spin-polarized surface currents and the quantum anomalous Hall effect. Previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies with no consensus. In this work, we use scanning tunneling microscopy and Landau level spectroscopy, in combination with X-ray photoemission spectroscopy to isolate the effects of growth factors such as temperature and composition, and to provide a microscopic picture of the role that disorder and composition play in determining the carrier density of epitaxially grown (Bi,Sb)$_2$Te$_3$ thin films. Using Landau level spectroscopy, we determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is $xsim 0.7$. However, we find that the post- growth annealing temperature can have a drastic impact on microscopic structure as well as carrier density. In particular, we find that when films are post-growth annealed at high temperature, better crystallinity and surface roughness are achieved; but this also produces a larger Te defect density, adding n-type carriers. This work provides key information necessary for optimizing thin film quality in this fundamentally and technologically important class of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا