ﻻ يوجد ملخص باللغة العربية
Crystal growth of MnBi$_{2}$Te$_{4}$ has delivered the first experimental corroboration of the 3D antiferromagnetic topological insulator state. Our present results confirm that the synthesis of MnBi$_{2}$Te$_{4}$ can be scaled-up and strengthen it as a promising experimental platform for studies of a crossover between magnetic ordering and non-trivial topology. High-quality single crystals of MnBi$_{2}$Te$_{4}$ are grown by slow cooling within a narrow range between the melting points of Bi$_{2}$Te$_{3}$ (586 {deg}C) and MnBi$_{2}$Te$_{4}$ (600 {deg}C). Single crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies. Powders of MnBi$_{2}$Te$_{4}$ can be obtained at subsolidus temperatures, and a complementary thermochemical study establishes a limited high-temperature range of phase stability. Nevertheless, quenched powders are stable at room temperature and exhibit long-range antiferromagnetic ordering below 24 K. The expected Mn(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption and linear dichroism data. MnBi$_{2}$Te$_{4}$ exhibits a metallic type of resistivity in the range 4.5-300 K. The compound is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments provide evidence for a surface state forming a gapped Dirac cone.
The antiferromagnetic (AF) compound MnBi$_{2}$Te$_{4}$ is suggested to be the first realization of an antiferromagnetic (AF) topological insulator. Here we report on inelastic neutron scattering studies of the magnetic interactions in MnBi$_{2}$Te$_{
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the t
Despite the rapid progress in understanding the first intrinsic magnetic topological insulator MnBi$_2$Te$_4$, its electronic structure remains a topic under debates. Here we perform a thorough spectroscopic investigation into the electronic structur
The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion
The layered topological insulator MnBi$_2$Te$_4$ has attracted great interest recently due to its intrinsic antiferromagnetic order, potentially hosting various topological phases. By temperature-dependent infrared spectroscopy over a broad frequency