ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Oscillations in the Field-induced Ferromagnetic State of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$

196   0   0.0 ( 0 )
 نشر من قبل Qianni Jiang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic antiferromagnetic topological insulator MnBi$_{2}$Te$_{4}$ undergoes a metamagnetic transition in a c-axis magnetic field. It has been predicted that ferromagnetic MnBi$_{2}$Te$_{4}$ is an ideal Weyl semimetal with a single pair of Weyl nodes. Here we report measurements of quantum oscillations detected in the field-induced ferromagnetic phase of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$, where Sb substitution tunes the majority carriers from electrons to holes. Single frequency Shubnikov-de Haas oscillations were observed in a wide range of Sb concentrations (0.54 $leq$ x $leq$ 1.21). The evolution of the oscillation frequency and the effective mass shows reasonable agreement with the Weyl semimetal band-structure of ferromagnetic MnBi$_{2}$Te$_{4}$ predicted by density functional calculations. Intriguingly, the quantum oscillation frequency shows a strong temperature dependence, indicating that the electronic structure sensitively depends on magnetism.



قيم البحث

اقرأ أيضاً

The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion states. A key to assessing these novel properties is to tune the Fermi level in the exchange gap of the Dirac surface band. MnBi$_2$Te$_4$ possesses non-trivial band topology with intrinsic antiferromagnetic (AFM) state that can enable all of these quantum states, however, highly electron-doped nature of the MnBi$_2$Te$_4$ crystals obstructs the exhibition of the gapped topological surface states. Here, we tailor the material through Sb-substitution to reveal the gapped surface states in MnBi$_{2-x}$Sb$_{x}$Te$_{4}$ (MBST). By shifting the Fermi level into the bulk band gap of MBST, we access the surface states and show a band gap of 50 meV at the Dirac point from quasi-particle interference (QPI) measured by scanning tunneling microscopy/spectroscopy (STM/STS). Surface-dominant conduction is confirmed below the Neel temperature through transport spectroscopy measured by multiprobe STM. The surface band gap is robust against out-of-plane magnetic field despite the promotion of field-induced ferromagnetism. The realization of bulk-insulating MTI with the large exchange gap offers a promising platform for exploring emergent topological phenomena.
Magnetism breaks the time reversal symmetry expected to open a Dirac gap in 3D topological insulators that consequently leads to quantum anomalous Hall effect. The most common approach of inducing ferromagnetic state is by doping magnetic 3$d$ elemen ts into bulk of 3D topological insulators. In Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$, the material where the quantum anomalous Hall effect was initially discovered at temperatures much lower than the ferromagnetic transition, $T_C$, the scanning tunneling microscopy studies have reported a large Dirac gap $sim20-100$ meV. The discrepancy between the low temperature of quantum anomalous Hall effect ($ll T_C$) and large spectroscopic Dirac gaps ($gg T_C$) found in magnetic topological insulators remains puzzling. Here, we used angle-resolved photoemission spectroscopy to study the surface electronic structure of pristine and potassium doped surface of Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$. Upon potassium deposition, the $p$-type surface state of pristine sample was turned into an $n$-type, allowing spectroscopic observation of Dirac point. We find a gapless surface state, with no evidence of a large Dirac gap reported in tunneling studies.
We have systematically studied the magnetic properties of chromium chalcogene compounds FeCr$_2$Se$_{4-x}$Te$_x$. The FeCr2Se4 undergoes antiferromagnetic ordering below 222 K. Substitution of tellurium lowers the antiferromagnetic ordering temperatu re and leads to short range ferromagnetic cluster behavior towards the tellurium end. Change over from antiferromagnetic to ferrimagnetic like behavior is also reflected in the corresponding transformation from semiconducting to metallic transport behavior. There is a large variation in the Curie-Weiss temperature, effective magnetic moment and ordering temperature (TN / TC) with Te substitution. The electronic band structure calculations suggest antiferromagnetic and ferrimagnetic ground state for the FeCr2Se4 and FeCr2Te4 respectively.
156 - D. Nevola , H. X. Li , J.-Q. Yan 2020
Surface magnetism and its correlation with the electronic structure are critical to understand the gapless topological surface state in the intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Here, using static and time resolved angle-resolved p hotoemission spectroscopy (ARPES), we find a significant ARPES intensity change together with a gap opening on a Rashba-like conduction band. Comparison with a model simulation strongly indicates that the surface magnetism on cleaved MnBi$_2$Te$_4$ is the same as its bulk state. The coexistence of surface ferromagnetism and a gapless TSS uncovers the novel complexity of MnBi$_2$Te$_4$ that may be responsible for the low quantum anomalous Hall temperature of exfoliated MnBi$_2$Te$_4$.
Crystal growth of MnBi$_{2}$Te$_{4}$ has delivered the first experimental corroboration of the 3D antiferromagnetic topological insulator state. Our present results confirm that the synthesis of MnBi$_{2}$Te$_{4}$ can be scaled-up and strengthen it a s a promising experimental platform for studies of a crossover between magnetic ordering and non-trivial topology. High-quality single crystals of MnBi$_{2}$Te$_{4}$ are grown by slow cooling within a narrow range between the melting points of Bi$_{2}$Te$_{3}$ (586 {deg}C) and MnBi$_{2}$Te$_{4}$ (600 {deg}C). Single crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies. Powders of MnBi$_{2}$Te$_{4}$ can be obtained at subsolidus temperatures, and a complementary thermochemical study establishes a limited high-temperature range of phase stability. Nevertheless, quenched powders are stable at room temperature and exhibit long-range antiferromagnetic ordering below 24 K. The expected Mn(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption and linear dichroism data. MnBi$_{2}$Te$_{4}$ exhibits a metallic type of resistivity in the range 4.5-300 K. The compound is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments provide evidence for a surface state forming a gapped Dirac cone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا