ترغب بنشر مسار تعليمي؟ اضغط هنا

Planning for Compilation of a Quantum Algorithm for Graph Coloring

333   0   0.0 ( 0 )
 نشر من قبل Davide Venturelli
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of compiling general quantum algorithms for implementation on near-term quantum processors has been introduced to the AI community. Previous work demonstrated that temporal planning is an attractive approach for part of this compilationtask, specifically, the routing of circuits that implement the Quantum Alternating Operator Ansatz (QAOA) applied to the MaxCut problem on a quantum processor architecture. In this paper, we extend the earlier work to route circuits that implement QAOA for Graph Coloring problems. QAOA for coloring requires execution of more, and more complex, operations on the chip, which makes routing a more challenging problem. We evaluate the approach on state-of-the-art hardware architectures from leading quantum computing companies. Additionally, we apply a planning approach to qubit initialization. Our empirical evaluation shows that temporal planning compares well to reasonable analytic upper bounds, and that solving qubit initialization with a classical planner generally helps temporal planners in finding shorter-makespan compilations for QAOA for Graph Coloring. These advances suggest that temporal planning can be an effective approach for more complex quantum computing algorithms and architectures.



قيم البحث

اقرأ أيضاً

Recently, the makespan-minimization problem of compiling a general class of quantum algorithms into near-term quantum processors has been introduced to the AI community. The research demonstrated that temporal planning is a strong approach for a clas s of quantum circuit compilation (QCC) problems. In this paper, we explore the use of constraint programming (CP) as an alternative and complementary approach to temporal planning. We extend previous work by introducing two new problem variations that incorporate important characteristics identified by the quantum computing community. We apply temporal planning and CP to the baseline and extended QCC problems as both stand-alone and hybrid approaches. Our hybrid methods use solutions found by temporal planning to warm start CP, leveraging the ability of the former to find satisficing solutions to problems with a high degree of task optionality, an area that CP typically struggles with. The CP model, benefiting from inferred bounds on planning horizon length and task counts provided by the warm start, is then used to find higher quality solutions. Our empirical evaluation indicates that while stand-alone CP is only competitive for the smallest problems, CP in our hybridization with temporal planning out-performs stand-alone temporal planning in the majority of problem classes.
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection, rate adaptation, etc. Here, we analyze variants of a simple algorithm of Bhartia et al. [Proc., ACM MOBIHOC, 2016]. In particular, we introduce a variant which requires only $O(nlogDelta)$ expected recolorings that generalizes the coupon collector problem. Finally, we show that the $O(nDelta)$ bound Bhartia et al. achieve for their algorithm still holds and is tight in adversarial scenarios.
The Road Coloring Theorem states that every aperiodic directed graph with constant out-degree has a synchronized coloring. This theorem had been conjectured during many years as the Road Coloring Problem before being settled by A. Trahtman. Trahtmans proof leads to an algorithm that finds a synchronized labeling with a cubic worst-case time complexity. We show a variant of his construction with a worst-case complexity which is quadratic in time and linear in space. We also extend the Road Coloring Theorem to the periodic case.
Let $H$ be a fixed $k$-vertex graph with $m$ edges and minimum degree $d >0$. We use the learning graph framework of Belovs to show that the bounded-error quantum query complexity of determining if an $n$-vertex graph contains $H$ as a subgraph is $O (n^{2-2/k-t})$, where $ t = max{frac{k^2- 2(m+1)}{k(k+1)(m+1)}, frac{2k - d - 3}{k(d+1)(m-d+2)}}$. The previous best algorithm of Magniez et al. had complexity $widetilde O(n^{2-2/k})$.
Approximate computing is a computation domain which can be used to trade time and energy with quality and therefore is useful in embedded systems. Energy is the prime resource in battery-driven embedded systems, like robots. Approximate computing can be used as a technique to generate approximate version of the control functionalities of a robot, enabling it to ration energy for computation at the cost of degraded quality. Usually, the programmer of the function specifies the extent of degradation that is safe for the overall safety of the system. However, in a collaborative environment, where several sub-systems co-exist and some of the functionality of each of them have been approximated, the safety of the overall system may be compromised. In this paper, we consider multiple identical robots operate in a warehouse, and the path planning function of the robot is approximated. Although the planned paths are safe for individual robots (i.e. they do not collide with the racks), we show that this leads to a collision among the robots. So, a controlled approximation needs to be carried out in such situations to harness the full power of this new paradigm if it needs to be a mainstream paradigm in future.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا