ﻻ يوجد ملخص باللغة العربية
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection, rate adaptation, etc. Here, we analyze variants of a simple algorithm of Bhartia et al. [Proc., ACM MOBIHOC, 2016]. In particular, we introduce a variant which requires only $O(nlogDelta)$ expected recolorings that generalizes the coupon collector problem. Finally, we show that the $O(nDelta)$ bound Bhartia et al. achieve for their algorithm still holds and is tight in adversarial scenarios.
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA19] states that in every $n$-vertex graph $G$ with maximum degree $Delta$, sampling $O(log{n})$ colors per each vertex independently from $Delta+1$ colors almost certainly allow
The Road Coloring Theorem states that every aperiodic directed graph with constant out-degree has a synchronized coloring. This theorem had been conjectured during many years as the Road Coloring Problem before being settled by A. Trahtman. Trahtmans
The graph isomorphism problem is of practical importance, as well as being a theoretical curiosity in computational complexity theory in that it is not known whether it is $NP$-complete or $P$. However, for many graphs, the problem is tractable, and
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, B
Massive sizes of real-world graphs, such as social networks and web graph, impose serious challenges to process and perform analytics on them. These issues can be resolved by working on a small summary of the graph instead . A summary is a compressed