ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation

164   0   0.0 ( 0 )
 نشر من قبل Davide Venturelli
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the makespan-minimization problem of compiling a general class of quantum algorithms into near-term quantum processors has been introduced to the AI community. The research demonstrated that temporal planning is a strong approach for a class of quantum circuit compilation (QCC) problems. In this paper, we explore the use of constraint programming (CP) as an alternative and complementary approach to temporal planning. We extend previous work by introducing two new problem variations that incorporate important characteristics identified by the quantum computing community. We apply temporal planning and CP to the baseline and extended QCC problems as both stand-alone and hybrid approaches. Our hybrid methods use solutions found by temporal planning to warm start CP, leveraging the ability of the former to find satisficing solutions to problems with a high degree of task optionality, an area that CP typically struggles with. The CP model, benefiting from inferred bounds on planning horizon length and task counts provided by the warm start, is then used to find higher quality solutions. Our empirical evaluation indicates that while stand-alone CP is only competitive for the smallest problems, CP in our hybridization with temporal planning out-performs stand-alone temporal planning in the majority of problem classes.



قيم البحث

اقرأ أيضاً

The problem of compiling general quantum algorithms for implementation on near-term quantum processors has been introduced to the AI community. Previous work demonstrated that temporal planning is an attractive approach for part of this compilationta sk, specifically, the routing of circuits that implement the Quantum Alternating Operator Ansatz (QAOA) applied to the MaxCut problem on a quantum processor architecture. In this paper, we extend the earlier work to route circuits that implement QAOA for Graph Coloring problems. QAOA for coloring requires execution of more, and more complex, operations on the chip, which makes routing a more challenging problem. We evaluate the approach on state-of-the-art hardware architectures from leading quantum computing companies. Additionally, we apply a planning approach to qubit initialization. Our empirical evaluation shows that temporal planning compares well to reasonable analytic upper bounds, and that solving qubit initialization with a classical planner generally helps temporal planners in finding shorter-makespan compilations for QAOA for Graph Coloring. These advances suggest that temporal planning can be an effective approach for more complex quantum computing algorithms and architectures.
Constraint programming (CP) is a paradigm used to model and solve constraint satisfaction and combinatorial optimization problems. In CP, problems are modeled with constraints that describe acceptable solutions and solved with backtracking tree searc h augmented with logical inference. In this paper, we show how quantum algorithms can accelerate CP, at both the levels of inference and search. Leveraging existing quantum algorithms, we introduce a quantum-accelerated filtering algorithm for the $texttt{alldifferent}$ global constraint and discuss its applicability to a broader family of global constraints with similar structure. We propose frameworks for the integration of quantum filtering algorithms within both classical and quantum backtracking search schemes, including a novel hybrid classical-quantum backtracking search method. This work suggests that CP is a promising candidate application for early fault-tolerant quantum computers and beyond.
This paper addresses quantum circuit mapping for Noisy Intermediate-Scale Quantum (NISQ) computers. Since NISQ computers constraint two-qubit operations on limited couplings, an input circuit must be transformed into an equivalent output circuit obey ing the constraints. The transformation often requires additional gates that can affect the accuracy of running the circuit. Based upon a previous work of quantum circuit mapping that leverages gate commutation rules, this paper shows algorithms that utilize both transformation and commutation rules. Experiments on a standard benchmark dataset confirm the algorithms with more rules can find even better circuit mappings compared with the previously-known best algorithms.
We developed and compared Constraint Programming (CP) and Quantum Annealing (QA) approaches for rolling stock optimisation considering necessary maintenance tasks. To deal with such problems in CP we investigated specialised pruning rules and impleme nted them in a global constraint. For the QA approach, we developed quadratic unconstrained binary optimisation (QUBO) models. For testing, we use data sets based on real data from Deutsche Bahn and run the QA approach on real quantum computers from D-Wave. Classical computers are used to run the CP approach as well as tabu search for the QUBO models. We find that both approaches tend at the current development stage of the physical quantum annealers to produce comparable results, with the caveat that QUBO does not always guarantee that the maintenance constraints hold, which we fix by adjusting the QUBO model in preprocessing, based on how close the trains are to a maintenance threshold distance.
PDDL+ is an extension of PDDL that enables modelling planning domains with mixed discrete-continuous dynamics. In this paper we present a new approach to PDDL+ planning based on Constraint Answer Set Programming (CASP), i.e. ASP rules plus numerical constraints. To the best of our knowledge, ours is the first attempt to link PDDL+ planning and logic programming. We provide an encoding of PDDL+ models into CASP problems. The encoding can handle non-linear hybrid domains, and represents a solid basis for applying logic programming to PDDL+ planning. As a case study, we consider the EZCSP CASP solver and obtain promising results on a set of PDDL+ benchmark problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا