ﻻ يوجد ملخص باللغة العربية
The problem of matching a query string to a directed graph, whose vertices are labeled by strings, has application in different fields, from data mining to computational biology. Several variants of the problem have been considered, depending on the fact that the match is exact or approximate and, in this latter case, which edit operations are considered and where are allowed. In this paper we present results on the complexity of the approximate matching problem, where edit operations are symbol substitutions and are allowed only on the graph labels or both on the graph labels and the query string. We introduce a variant of the problem that asks whether there exists a path in a graph that represents a query string with any number of edit operations and we show that is is NP-complete, even when labels have length one and in the case the alphabet is binary. Moreover, when it is parameterized by the length of the input string and graph labels have length one, we show that the problem is fixed-parameter tractable and it is unlikely to admit a polynomial kernel. The NP-completeness of this problem leads to the inapproximability (within any factor) of the approximate matching when edit operations are allowed only on the graph labels. Moreover, we show that the variants of approximate string matching to graph we consider are not fixed-parameter tractable, when the parameter is the number of edit operations, even for graphs that have distance one from a DAG. The reduction for this latter result allows us to prove the inapproximability of the variant where edit operations can be applied both on the query string and on graph labels.
Longest Run Subsequence is a problem introduced recently in the context of the scaffolding phase of genome assembly (Schrinner et al., WABI 2020). The problem asks for a maximum length subsequence of a given string that contains at most one run for e
We consider the problems of deciding whether an input graph can be modified by removing/adding at most k vertices/edges such that the result of the modification satisfies some property definable in first-order logic. We establish a number of sufficie
We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying ou
Efficient computation of node proximity queries such as transition probabilities, Personalized PageRank, and Katz are of fundamental importance in various graph mining and learning tasks. In particular, several recent works leverage fast node proximi