ترغب بنشر مسار تعليمي؟ اضغط هنا

The complexity of finding optimal subgraphs to represent spatial correlation

154   0   0.0 ( 0 )
 نشر من قبل William Pettersson
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem in polynomial time in restricted settings. The first of these utilises dynamic programming on a tree decomposition, and runs in polynomial time if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but is an FPT algorithm when the maximum number of edges that can be removed is taken as the parameter.



قيم البحث

اقرأ أيضاً

We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $ P(G,Pi,k)$ asks whether there exists $k$ vertices of $G$ that induce a subgraph satisfying property $Pi$. This problem, $P(G,Pi,k)$ has been proved to be NP-complete by Lewis and Yannakakis. The parameterized complexity of this problem is shown to be W[1]-complete by Khot and Raman, if $Pi$ includes all trivial graphs but not all complete graphs and vice versa; and is fixed-parameter tractable (FPT), otherwise. As the problem is W[1]-complete on general graphs when $Pi$ includes all trivial graphs but not all complete graphs and vice versa, it is natural to further investigate the problem on restricted graph classes. Motivated by this line of research, we study the problem on graphs which also belong to a hereditary graph class and establish a framework which settles the parameterized complexity of the problem for various hereditary graph classes. In particular, we show that: $P(G,Pi,k)$ is solvable in polynomial time when the graph $G$ is co-bipartite and $Pi$ is the property of being planar, bipartite or triangle-free (or vice-versa). $P(G,Pi,k)$ is FPT when the graph $G$ is planar, bipartite or triangle-free and $Pi$ is the property of being planar, bipartite or triangle-free, or graph $G$ is co-bipartite and $Pi$ is the property of being co-bipartite. $P(G,Pi,k)$ is W[1]-complete when the graph $G$ is $C_4$-free, $K_{1,4}$-free or a unit disk graph and $Pi$ is the property of being either planar or bipartite.
A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put on the problem of finding a single dense subgraph, only r ecently the focus has been shifted to the problem of finding a set of densest subgraphs. Some approaches aim at finding disjoint subgraphs, while in many real-world networks communities are often overlapping. An approach introduced to find possible overlapping subgraphs is the Top-k Overlapping Densest Subgraphs problem. For a given integer k >= 1, the goal of this problem is to find a set of k densest subgraphs that may share some vertices. The objective function to be maximized takes into account both the density of the subgraphs and the distance between subgraphs in the solution. The Top-k Overlapping Densest Subgraphs problem has been shown to admit a 1/10-factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improves the approximation factor to 1/2 , when k is bounded by the vertex set, and to 2/3 when k is a constant. For the computational complexity, we show that the problem is NP-hard even when k = 3.
For two positive integers $k$ and $ell$, a $(k times ell)$-spindle is the union of $k$ pairwise internally vertex-disjoint directed paths with $ell$ arcs between two vertices $u$ and $v$. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed $ell geq 1$, finding the largest $k$ such that an input digraph $G$ contains a subdivision of a $(k times ell)$-spindle is polynomial-time solvable if $ell leq 3$, and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.
The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-cod ing that runs in time $O(n^{tw(H)+1})$ [Alon, Yuster, Zwick95], where $n$ is the number of vertices of the host graph $G$. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of $O(n^{tw(H)+1-varepsilon})$ or even faster (e.g. for $k$-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time $n^{o(tw(H) / log(tw(H)))}$ for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx07]. In this paper, we demonstrate the existence of maximally hard pattern graphs $H$ that require time $n^{tw(H)+1-o(1)}$. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth $t$: For any $varepsilon > 0$ there exists $t ge 3$ and a pattern graph $H$ of treewidth $t$ such that Subgraph Isomorphism on pattern $H$ has no algorithm running in time $O(n^{t+1-varepsilon})$. Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth $t ge 3$: For any $t ge 3$ there exists a pattern graph $H$ of treewidth $t$ such that for any $varepsilon>0$ Subgraph Isomorphism on pattern $H$ has no algorithm running in time $O(n^{t+1-varepsilon})$. In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for $tw < 3$, (3) Subgraph Isomorphism parameterized by pathwidth, and (4) a weighted problem variant.
Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on $n$ vertices and a positive integer parameter $k$, find if there exist $k$ edges (arcs) whose delet ion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time $2^{O(k log k)}n^{O(1)}$. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. In this paper we answer their question in the affirmative: using the technique of computing emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا